• Login
    View Item 
    •   Home
    • Academic Divisions
    • Biological and Environmental Science & Engineering (BESE)
    • Biological and Environmental Science and Engineering (BESE) Division
    • View Item
    •   Home
    • Academic Divisions
    • Biological and Environmental Science & Engineering (BESE)
    • Biological and Environmental Science and Engineering (BESE) Division
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Surface Modification of Ceramic Membranes with Thin-film Deposition Methods for Wastewater Treatment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Daniyal Jahangir Dissertation.pdf
    Size:
    4.612Mb
    Format:
    PDF
    Description:
    Daniyal Jahangir Dissertation
    Download
    Type
    Dissertation
    Authors
    JAHANGIR, DANIYAL cc
    Advisors
    Leiknes, TorOve cc
    Committee members
    Saikaly, Pascal cc
    Lai, Zhiping cc
    Croue, Jean-Philippe
    Program
    Environmental Science and Engineering
    KAUST Department
    Biological and Environmental Science and Engineering (BESE) Division
    Date
    2017-12
    Embargo End Date
    2018-12-04
    Permanent link to this record
    http://hdl.handle.net/10754/626276
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2018-12-04.
    Abstract
    Membrane fouling, which is caused by deposition/adsorption of foulants on the surface or within membrane pores, still remains a bottleneck that hampers the widespread application of membrane bioreactor (MBR) technology for wastewater treatment. Recently membrane surface modification has proved to be a useful method in water/wastewater treatment to improve the surface hydrophilicity of membranes to obtain higher water fluxes and to reduce fouling. In this study, membrane modification was investigated by depositing a thin film of same thickness of TiO2 on the surface of an ultrafiltration alumina membrane. Various thin-film deposition (TFD) methods were employed, i.e. electron-beam evaporation, sputter and atomic layer deposition (ALD), and a comparative study of the methods was conducted to assess fouling inhibition performance in a lab-scale anaerobic MBR (AnMBR) fed with synthetic municipal wastewater. Thorough surface characterization of all modified membranes was carried out along with clean water permeability (CWP) tests and fouling behavior by bovine serum albumin (BSA) adsorption tests. The study showed better fouling inhibition performance of all modified membranes; however the effect varied due to different surface characteristics obtained by different deposition methods. As a result, ALD-modified membrane showed a superior status in terms of surface characteristics and fouling inhibition performance in AnMBR filtration tests. Hence ALD was determined to be the best TFD method for alumina membrane surface modification for this study. ALD-modified membranes were further characterized to determine an optimum thickness of TiO2-film by applying different ALD cycles. ALD treatment significantly improved the surface hydrophilicity of the unmodified membrane. Also ALD-TiO2 modification was observed to reduce the surface roughness of original alumina membrane, which in turn enhanced the anti-fouling properties of modified membranes. Finally, a same thickness of ALD-TiO2 and ALD-SnO2 modified membranes were tested for alginate fouling inhibition performance in a dead-end constant-pressure filtration system. This is the first report on the application of SnO2-modified ceramic membrane for testing its alginate fouling potential; which was determined to be nearly-same for both modified membranes with a negligible amount of difference. This revealed SnO2 as a potential future anti-foulant to be tested for membrane modification/fabrication for application in water/wastewater treatment systems.
    Citation
    JAHANGIR, D. A. N. I. Y. A. L. (2017). Surface Modification of Ceramic Membranes with Thin-film Deposition Methods for Wastewater Treatment. KAUST Research Repository. https://doi.org/10.25781/KAUST-IJ1OD
    DOI
    10.25781/KAUST-IJ1OD
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-IJ1OD
    Scopus Count
    Collections
    Biological and Environmental Science and Engineering (BESE) Division; Environmental Science and Engineering Program; PhD Dissertations

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.