Show simple item record

dc.contributor.authorMasmoudi, Nabil
dc.contributor.authorAlkhalifah, Tariq Ali
dc.date.accessioned2017-11-29T11:13:57Z
dc.date.available2017-11-29T11:13:57Z
dc.date.issued2017-08-17
dc.identifier.citationMasmoudi N, Alkhalifah T (2017) Waveform inversion in acoustic orthorhombic media with a practical set of parameters. SEG Technical Program Expanded Abstracts 2017. Available: http://dx.doi.org/10.1190/segam2017-17672715.1.
dc.identifier.doi10.1190/segam2017-17672715.1
dc.identifier.urihttp://hdl.handle.net/10754/626250
dc.description.abstractFull-waveform inversion (FWI) in anisotropic media is overall challenging, mainly because of the large computational cost, especially in 3D, and the potential trade-offs between the model parameters needed to describe such a media. We propose an efficient 3D FWI implementation for orthorhombic anisotropy under the acoustic assumption. Our modeling is based on solving the pseudo-differential orthorhombic wave equation split into a differential operator and a scalar one. The modeling is computationally efficient and free of shear wave artifacts. Using the adjoint state method, we derive the gradients with respect to a practical set of parameters describing the acoustic orthorhombic model, made of one velocity and five dimensionless parameters. This parameterization allows us to use a multi-stage model inversion strategy based on the continuity of the scattering potential of the parameters as we go from higher symmetry anisotropy to lower ones. We apply the proposed approach on a modified SEG-EAGE overthrust synthetic model. The quality of the inverted model suggest that we may recover only 4 parameters, with different resolution scales depending on the scattering potential of these parameters.
dc.description.sponsorshipWe would like to thank KAUST for financial support and SWAG members for many useful discussions. For computer time, this research used the resources of the Supercomputing Laboratory in KAUST.
dc.publisherSociety of Exploration Geophysicists
dc.relation.urlhttps://library.seg.org/doi/10.1190/segam2017-17672715.1
dc.rightsArchived with thanks to SEG Technical Program Expanded Abstracts 2017
dc.subjectfull-waveform inversion
dc.subject3D
dc.subjectacoustic
dc.subjectanisotropy
dc.titleWaveform inversion in acoustic orthorhombic media with a practical set of parameters
dc.typeConference Paper
dc.contributor.departmentEarth Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentSeismic Wave Analysis Group
dc.identifier.journalSEG Technical Program Expanded Abstracts 2017
dc.eprint.versionPublisher's Version/PDF
kaust.personMasmoudi, Nabil
kaust.personAlkhalifah, Tariq Ali
refterms.dateFOA2018-06-13T18:57:07Z
dc.date.published-online2017-08-17
dc.date.published-print2017-08-17


Files in this item

Thumbnail
Name:
segam2017-17672715.1.pdf
Size:
2.093Mb
Format:
PDF
Description:
Expanded Abstract

This item appears in the following Collection(s)

Show simple item record