• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    An efficient Helmholtz solver for acoustic transversely isotropic media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    geo2017-0618.1.pdf
    Size:
    473.7Kb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    Wu, Zedong cc
    Alkhalifah, Tariq Ali cc
    KAUST Department
    Earth Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Seismic Wave Analysis Group
    Date
    2017-12-22
    Online Publication Date
    2017-12-22
    Print Publication Date
    2018-03
    Permanent link to this record
    http://hdl.handle.net/10754/626223
    
    Metadata
    Show full item record
    Abstract
    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.
    Citation
    Wu Z, Alkhalifah T (2017) An efficient Helmholtz solver for acoustic transversely isotropic media. GEOPHYSICS: 1–20. Available: http://dx.doi.org/10.1190/geo2017-0618.1.
    Sponsors
    We thank KAUST for its support and the SWAG group for the collaborative environment. Especially, we thank Zhendong Zhang for useful discussions. We also thank Hemang Shah, Faqi Liu, Scott Morton, Hess Corporation and BP Exploration Operation for providing the benchmark model. The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). For computer time, this research used the resources of the Supercomputing Laboratory at King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia. We also thank the associate editor Dimitri Komatitsch, assistant editor Arthur Cheng, Jiubing Cheng and another anonymous reviewer for their fruitful suggestions and comments.
    Publisher
    Society of Exploration Geophysicists
    Journal
    GEOPHYSICS
    DOI
    10.1190/geo2017-0618.1
    Additional Links
    https://library.seg.org/doi/10.1190/geo2017-0618.1
    ae974a485f413a2113503eed53cd6c53
    10.1190/geo2017-0618.1
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Earth Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.