Genetic Components of Root Architecture Remodeling in Response to Salt Stress
Type
ArticleAuthors
Julkowska, MagdalenaKoevoets, Iko Tamar
Mol, Selena
Hoefsloot, Huub CJ
Feron, Richard
Tester, Mark A.

Keurentjes, Joost J.B.
Korte, Arthur
Haring, Michel A
de Boer, Gert-Jan
Testerink, Christa
KAUST Department
Biological and Environmental Science and Engineering (BESE) DivisionCenter for Desert Agriculture
Plant Science
The Salt Lab
Date
2017-11-07Online Publication Date
2017-11-07Print Publication Date
2017-12Permanent link to this record
http://hdl.handle.net/10754/626155
Metadata
Show full item recordAbstract
Salinity of the soil is highly detrimental to plant growth. Plants respond by a redistribution of root mass between main and lateral roots, yet the genetic machinery underlying this process is still largely unknown. Here, we describe the natural variation among 347 Arabidopsis thaliana accessions in root system architecture (RSA) and identify the traits with highest natural variation in their response to salt. Salt-induced changes in RSA were associated with 100 genetic loci using genome-wide association studies (GWAS). Two candidate loci associated with lateral root development were validated and further investigated. Changes in CYP79B2 expression in salt stress positively correlated with lateral root development in accessions, and cyp79b2 cyp79b3 double mutants developed fewer and shorter lateral roots under salt stress, but not in control conditions. By contrast, high HKT1 expression in the root repressed lateral root development, which could be partially rescued by addition of potassium. The collected data and Multi-Variate analysis of multiple RSA traits, available through the Salt_NV_Root App, capture root responses to salinity. Together, our results provide a better understanding of effective RSA remodeling responses, and the genetic components involved, for plant performance in stress conditions.Citation
Julkowska M, Koevoets IT, Mol S, Hoefsloot HC, Feron R, et al. (2017) Genetic Components of Root Architecture Remodeling in Response to Salt Stress. The Plant Cell: tpc.00680.2016. Available: http://dx.doi.org/10.1105/tpc.16.00680.Sponsors
The authors would like to thank Willem Kruijer from Wageningen University for help with GWAS, Dorota Kawa and Jessica Meyer from University of Amsterdam for their technical support. We thank Dr. Hiroyushi Kasahara (RIKEN Center for Sustainable Resource Science, Yokohama, Japan) for the provided materials. This work was supported by the Netherlands Organisation for Scientific Research (NWO), STW Learning from Nature project 10987 and ALW Graduate Program grant 831.15.004.Journal
The Plant CellPubMed ID
29114015Additional Links
http://www.plantcell.org/content/early/2017/11/07/tpc.16.00680ae974a485f413a2113503eed53cd6c53
10.1105/tpc.16.00680
Scopus Count
Related articles
- Phosphate-Dependent Root System Architecture Responses to Salt Stress.
- Authors: Kawa D, Julkowska MM, Sommerfeld HM, Ter Horst A, Haring MA, Testerink C
- Issue date: 2016 Oct
- Fluctuating selection on migrant adaptive sodium transporter alleles in coastal Arabidopsis thaliana.
- Authors: Busoms S, Paajanen P, Marburger S, Bray S, Huang XY, Poschenrieder C, Yant L, Salt DE
- Issue date: 2018 Dec 26
- Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1.
- Authors: Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW
- Issue date: 2008 Jun
- ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance.
- Authors: Shkolnik-Inbar D, Adler G, Bar-Zvi D
- Issue date: 2013 Mar
- Analysis of Arabidopsis thaliana HKT1 and Eutrema salsugineum/botschantzevii HKT1;2 Promoters in Response to Salt Stress in Athkt1:1 Mutant.
- Authors: Nawaz I, Iqbal M, Hakvoort HWJ, de Boer AH, Schat H
- Issue date: 2019 Jun