A Microbeam Resonator with Partial Electrodes for Logic and Memory Elements
dc.contributor.author | Hafiz, Md Abdullah Al | |
dc.contributor.author | Ilyas, Saad | |
dc.contributor.author | Ahmed, Sally | |
dc.contributor.author | Younis, Mohammad I. | |
dc.contributor.author | Fariborzi, Hossein | |
dc.date.accessioned | 2017-11-14T12:46:05Z | |
dc.date.available | 2017-11-14T12:46:05Z | |
dc.date.issued | 2017-11-10 | |
dc.identifier.citation | Hafiz MAA, Ilyas S, Ahmed S, Younis MI, Fariborzi H (2017) A Microbeam Resonator with Partial Electrodes for Logic and Memory Elements. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits: 1–1. Available: http://dx.doi.org/10.1109/JXCDC.2017.2772338. | |
dc.identifier.issn | 2329-9231 | |
dc.identifier.doi | 10.1109/JXCDC.2017.2772338 | |
dc.identifier.uri | http://hdl.handle.net/10754/626150 | |
dc.description.abstract | We demonstrate logic and memory elements based on an in-plane clamped-clamped microbeam resonator. The micro-resonator is electrostatically actuated through a drive electrode and the motional signal is capacitively sensed at a sense electrode, while the resonance characteristics are modulated by DC voltage pulses provided at two separate partial electrodes, independent of the drive/sense electrodes. For the logic applications, we use two separate electrodes to provide DC voltages defined as the logic inputs. The high (low) motional signal at on-resonance (off-resonance) state is defined as the logic output state “1” (“0”). For the memory operation, two stable vibrational states, high and low, within the hysteretic regime are defined as the memory states, “1” and “0”, respectively. We take advantage of the split electrode configuration to provide positive and negative DC voltage pulses selectively to set/reset the memory states (“1”/“0”) without affecting the driving and sensing terminals. Excluding the energy cost for supporting electronics, these devices consume energy in 10’s of picojoules per logic/memory operations. Furthermore, the devices are fabricated using silicon on insulator (SOI) wafers, have the potential for on-chip integration, and operate at moderate pressure (~1 Torr) and room temperature. | |
dc.description.sponsorship | This work was supported by King Abdullah University of Science and Technology (KAUST) office of sponsored research (OSR) under Award No. OSR-2016-CRG5-3001. | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.relation.url | http://ieeexplore.ieee.org/document/8103925/ | |
dc.rights | (c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. | |
dc.subject | Clamped-clamped Microbeam Resonator | |
dc.subject | Electromechanical Computation | |
dc.subject | Logic Device | |
dc.subject | Partial Electrodes | |
dc.subject | Random Access Memory | |
dc.title | A Microbeam Resonator with Partial Electrodes for Logic and Memory Elements | |
dc.type | Article | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.contributor.department | Electrical Engineering Program | |
dc.contributor.department | Mechanical Engineering Program | |
dc.contributor.department | Physical Science and Engineering (PSE) Division | |
dc.identifier.journal | IEEE Journal on Exploratory Solid-State Computational Devices and Circuits | |
dc.eprint.version | Post-print | |
kaust.person | Hafiz, Md Abdullah Al | |
kaust.person | Ilyas, Saad | |
kaust.person | Ahmed, Sally | |
kaust.person | Younis, Mohammad I. | |
kaust.person | Fariborzi, Hossein | |
kaust.grant.number | OSR-2016-CRG5-3001 | |
refterms.dateFOA | 2018-06-13T10:21:34Z | |
dc.date.published-online | 2017-11-10 | |
dc.date.published-print | 2017-12 |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Physical Science and Engineering (PSE) Division
For more information visit: http://pse.kaust.edu.sa/ -
Electrical and Computer Engineering Program
For more information visit: https://cemse.kaust.edu.sa/ece -
Mechanical Engineering Program
For more information visit: https://pse.kaust.edu.sa/study/academic-programs/mechanical-engineering/Pages/home.aspx -
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/