• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    SCaMF–RM: A Fused High-Resolution Land Cover Product of the Rocky Mountains

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Rodríguez-Jeangros, Nicolás
    Hering, Amanda S.
    Kaiser, Timothy
    McCray, John E.
    KAUST Grant Number
    OSR-2015-CRG4-2582
    Date
    2017-09-30
    Permanent link to this record
    http://hdl.handle.net/10754/626083
    
    Metadata
    Show full item record
    Abstract
    Land cover (LC) products, derived primarily from satellite spectral imagery, are essential inputs for environmental studies because LC is a critical driver of processes involved in hydrology, ecology, and climatology, among others. However, existing LC products each have different temporal and spatial resolutions and different LC classes that rarely provide the detail required by these studies. Using multiple existing LC products, we implement our Spatiotemporal Categorical Map Fusion (SCaMF) methodology over a large region of the Rocky Mountains (RM), encompassing sections of six states, to create a new LC product, SCaMF–RM. To do this, we must adapt SCaMF to address the prediction of LC in large space–time regions that present nonstationarities, and we add more flexibility in the LC classifications of the predicted product. SCaMF–RM is produced at two high spatial resolutions, 30 and 50 m, and a yearly frequency for the 30-year period 1983–2012. When multiple products are available in time, we illustrate how SCaMF–RM captures relevant information from the different LC products and improves upon flaws observed in other products. Future work needed includes an exhaustive validation not only of SCaMF–RM but also of all input LC products.
    Citation
    Rodríguez-Jeangros N, Hering AS, Kaiser T, McCray JE (2017) SCaMF–RM: A Fused High-Resolution Land Cover Product of the Rocky Mountains. Remote Sensing 9: 1015. Available: http://dx.doi.org/10.3390/rs9101015.
    Sponsors
    The authors would like to thank the Colorado Higher Education Competitive Research Authority (CHECRA), state-provided matching funds for a National Science Foundation WSC program (grant no. WSC-1204787), for funding the project, and the high-performance computing support from Yellowstone provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. Specifically, we would like to thank Richard Valent from NCAR for his crucial support in the management of computational allocations and hurdles, and Laura Guy from the Arthur Lakes Library at Colorado School of Mines for her valuable assistance in the preparation of the online repository of SCaMF–RM. Amanda S. Hering has received support from King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR), Grant/Award Number: OSR-2015-CRG4-2582.
    Publisher
    MDPI AG
    Journal
    Remote Sensing
    DOI
    10.3390/rs9101015
    ae974a485f413a2113503eed53cd6c53
    10.3390/rs9101015
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.