Show simple item record

dc.contributor.authorSørbye, Sigrunn Holbek
dc.contributor.authorRue, Haavard
dc.date.accessioned2017-10-31T08:12:58Z
dc.date.available2017-10-31T08:12:58Z
dc.date.issued2017-07-07
dc.identifier.citationSørbye SH, Rue H (2017) Fractional Gaussian noise: Prior specification and model comparison. Environmetrics: e2457. Available: http://dx.doi.org/10.1002/env.2457.
dc.identifier.issn1180-4009
dc.identifier.doi10.1002/env.2457
dc.identifier.urihttp://hdl.handle.net/10754/626061
dc.description.abstractFractional Gaussian noise (fGn) is a stationary stochastic process used to model antipersistent or persistent dependency structures in observed time series. Properties of the autocovariance function of fGn are characterised by the Hurst exponent (H), which, in Bayesian contexts, typically has been assigned a uniform prior on the unit interval. This paper argues why a uniform prior is unreasonable and introduces the use of a penalised complexity (PC) prior for H. The PC prior is computed to penalise divergence from the special case of white noise and is invariant to reparameterisations. An immediate advantage is that the exact same prior can be used for the autocorrelation coefficient ϕ(symbol) of a first-order autoregressive process AR(1), as this model also reflects a flexible version of white noise. Within the general setting of latent Gaussian models, this allows us to compare an fGn model component with AR(1) using Bayes factors, avoiding the confounding effects of prior choices for the two hyperparameters H and ϕ(symbol). Among others, this is useful in climate regression models where inference for underlying linear or smooth trends depends heavily on the assumed noise model.
dc.description.sponsorshipThe 20th Century Reanalysis V2c data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, U.S.A., from their website (http://www.esrl.noaa.gov/psd/). The authors wish to thank Hege-Beate Fredriksen for valuable discussions and for processing the data to give aggregated data for land and sea-surface temperatures. The authors also acknowledge The Research Council of Norway for financial support, grant numbers 240873 and 239048.
dc.publisherWiley
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/env.2457/full
dc.rightsThis is the submitted version of the following article: Fractional Gaussian noise: Prior specification and model comparison, which has been published in final form at http://doi.org/10.1002/env.2457. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.
dc.subjectAutoregressive process
dc.subjectBayes factor
dc.subjectLong-range dependence
dc.subjectPC prior
dc.subjectR-INLA
dc.titleFractional Gaussian noise: Prior specification and model comparison
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentStatistics Program
dc.identifier.journalEnvironmetrics
dc.eprint.versionPre-print
dc.contributor.institutionDepartment of Mathematic and Statistics; UiT The Arctic University of Norway; Tromsø Norway
dc.identifier.arxivid1611.06399
kaust.personRue, Haavard
dc.versionv1
dc.relation.issupplementedbyDOI:10.6084/m9.figshare.5134816
dc.relation.issupplementedbyDOI:10.6084/m9.figshare.c.3808018
refterms.dateFOA2018-06-13T12:16:00Z
display.relations<b> Is Supplemented By:</b> <br/> <ul> <li><i>[Dataset]</i> <br/> . DOI: <a href="https://doi.org/10.6084/m9.figshare.5134816">10.6084/m9.figshare.5134816</a> HANDLE: <a href="http://hdl.handle.net/10754/662376">10754/662376</a></li></ul><b> Is Supplemented By:</b> <br/> <ul> <li><i>[Dataset]</i> <br/> . DOI: <a href="https://doi.org/10.6084/m9.figshare.c.3808018">10.6084/m9.figshare.c.3808018</a> HANDLE: <a href="http://hdl.handle.net/10754/663918">10754/663918</a></li></ul>


Files in this item

Thumbnail
Name:
1611.06399.pdf
Size:
225.5Kb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record