• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Chen, Yen-Chang
    Lu, Ang-Yu
    Lu, Ping
    Yang, Xiulin cc
    Jiang, Chang-Ming
    Mariano, Marina
    Kaehr, Brian
    Lin, Oliver
    Taylor, André
    Sharp, Ian D.
    Li, Lain-Jong cc
    Chou, Stanley S.
    Tung, Vincent cc
    KAUST Department
    Material Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2017-10-12
    Online Publication Date
    2017-10-12
    Print Publication Date
    2017-11
    Permanent link to this record
    http://hdl.handle.net/10754/626041
    
    Metadata
    Show full item record
    Abstract
    The emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.
    Citation
    Chen Y-C, Lu A-Y, Lu P, Yang X, Jiang C-M, et al. (2017) Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials: 1703863. Available: http://dx.doi.org/10.1002/adma.201703863.
    Sponsors
    Y.-C.C. and A.-Y.L. contributed equally to this work. V.T. gratefully acknowledges the research award from the Doctoral New Investigator Award from ACS Petroleum Fund (ACS PRF 54717-DNI10, V.T.). Characterization and fabrication of HER electrodes in this work were performed as User Proposals (#4240) at the Molecular Foundry, Lawrence Berkeley National Lab, supported by the Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Raman spectroscopy was performed at the Joint Center for Artificial Photosynthesis (JCAP), a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. Y.C. acknowledges the fellowship support from National Aeronautics and Space Administration (NASA) grant no. NNX15AQ01. Work at Sandia, including experimental design, materials synthesis, microscopy, were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Equipment at Sandia were furnished with support from the Laboratory Directed Research and Development programs. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. A.Y.L, X.Y., and L.J.L. acknowledge the support from KAUST. V.T. is indebted to Dr. Hidetaka Ishihara, Xuan Wei, Jose Hernandez, Teresa L. Chen, and Vipawee Limsakoune, for the fruitful discussion in droplet dynamics and assistance in instrumentation.
    Publisher
    Wiley
    Journal
    Advanced Materials
    DOI
    10.1002/adma.201703863
    Additional Links
    http://onlinelibrary.wiley.com/doi/10.1002/adma.201703863/full
    ae974a485f413a2113503eed53cd6c53
    10.1002/adma.201703863
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.