• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    The effect of z-binding yarns on the electrical properties of 3D woven composites

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Saleh, Mohamed Nasr
    Yudhanto, Arief cc
    Lubineau, Gilles cc
    Soutis, Constantinos
    KAUST Department
    Composite and Heterogeneous Material Analysis and Simulation Laboratory (COHMAS)
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2017-09-28
    Online Publication Date
    2017-09-28
    Print Publication Date
    2017-12
    Permanent link to this record
    http://hdl.handle.net/10754/626023
    
    Metadata
    Show full item record
    Abstract
    Electrical resistance monitoring (ERM) has been used to study the effect of the z-binding yarns on the initial electrical resistance (ER) and its change of three architectures of 3D woven carbon fibre composites namely (orthogonal “ORT”, layer-to-layer “LTL” and angle interlock “AI”) when tested in tension. Specimens are loaded in on-axis “warp” and off-axis “45°” directions. In-situ ERM is achieved using the four-probe technique. Monotonic and cyclic “load/unload” tests are performed to investigate the effect of piezo-resistivity and residual plasticity on resistance variation. The resistance increase for the off-axis loaded specimens (∼90%) is found to be higher than that of their on-axis counterparts (∼20%). In the case of cyclic testing, the resistance increase upon unloading is irreversible which suggests permanent damage presence not piezo-resistive effect. At the moment, it is difficult to obtain a direct correlation between resistance variation and damage in 3D woven composites due to the complexity of the conduction path along the three orthogonal directions, however this study demonstrates the potential of using ERM for damage detection in 3D woven carbon fibre-based composites and highlights the challenges that need to be overcome to establish ERM as a Structural Health Monitoring (SHM) technique for such material systems.
    Citation
    Saleh MN, Yudhanto A, Lubineau G, Soutis C (2017) The effect of z-binding yarns on the electrical properties of 3D woven composites. Composite Structures 182: 606–616. Available: http://dx.doi.org/10.1016/j.compstruct.2017.09.081.
    Sponsors
    Authors would like to acknowledge the financial support from University of Manchester (UoM) and from Baseline Research Funds from King Abdullah University of Science and Technology (KAUST). We also acknowledge the technical support from the Northwest Composites Certification and Evaluation Facility (NCCEF).
    Publisher
    Elsevier BV
    Journal
    Composite Structures
    DOI
    10.1016/j.compstruct.2017.09.081
    Additional Links
    http://www.sciencedirect.com/science/article/pii/S0263822317316185
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.compstruct.2017.09.081
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.