Convergence analysis of the nonlinear iterative method for two-phase flow in porous media associated with nanoparticle injection

Type
Article

Authors
El-Amin, Mohamed
Kou, Jisheng
Sun, Shuyu

KAUST Department
Computational Transport Phenomena Lab
Earth Science and Engineering Program
Physical Science and Engineering (PSE) Division

Online Publication Date
2017-08-29

Print Publication Date
2017-10-02

Date
2017-08-29

Abstract
Purpose In this paper, we introduce modeling, numerical simulation, and convergence analysis of the problem nanoparticles transport carried by a two-phase flow in a porous medium. The model consists of equations of pressure, saturation, nanoparticles concentration, deposited nanoparticles concentration on the pore-walls, and entrapped nanoparticles concentration in pore-throats. Design/methodology/approach Nonlinear iterative IMPES-IMC (IMplicit Pressure Explicit Saturation–IMplicit Concentration) scheme is used to solve the problem under consideration. The governing equations are discretized using the cell-centered finite difference (CCFD) method. The pressure and saturation equations are coupled to calculate the pressure, then the saturation is updated explicitly. Therefore, the equations of nanoparticles concentration, the deposited nanoparticles concentration on the pore walls and the entrapped nanoparticles concentration in pore throats are computed implicitly. Then, the porosity and the permeability variations are updated. Findings We stated and proved three lemmas and one theorem for the convergence of the iterative method under the natural conditions and some continuity and boundedness assumptions. The theorem is proved by induction states that after a number of iterations the sequences of the dependent variables such as saturation and concentrations approach solutions on the next time step. Moreover, two numerical examples are introduced with convergence test in terms of Courant–Friedrichs–Lewy (CFL) condition and a relaxation factor. Dependent variables such as pressure, saturation, concentration, deposited concentrations, porosity and permeability are plotted as contours in graphs, while the error estimations are presented in table for different values of number of time steps, number of iterations and mesh size. Research limitations/implications The domain of the computations is relatively small however, it is straightforward to extend this method to oil reservoir (large) domain keeping similar definitions of CFL number and other physical parameters. Originality/value The model of the problem under consideration is not studied before. Also, both solution technique and convergence analysis are not used before with this model.

Citation
El-Amin M, Kou J, Sun S (2017) Convergence analysis of the nonlinear iterative method for two-phase flow in porous media associated with nanoparticle injection. International Journal of Numerical Methods for Heat & Fluid Flow 27: 2289–2317. Available: http://dx.doi.org/10.1108/hff-05-2016-0210.

Publisher
Emerald

Journal
International Journal of Numerical Methods for Heat & Fluid Flow

DOI
10.1108/hff-05-2016-0210

Additional Links
http://www.emeraldinsight.com/doi/abs/10.1108/HFF-05-2016-0210

Permanent link to this record