A spatiotemporal model for the LTE uplink: Spatially interacting tandem queues approach
Type
Conference PaperKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Investment Fund
Date
2017-07-31Online Publication Date
2017-07-31Print Publication Date
2017-05Permanent link to this record
http://hdl.handle.net/10754/625992
Metadata
Show full item recordAbstract
With the proliferation of the Internet-of-things (IoT), there is an undeniable consensus that cellular LTE networks will have to support a dramatically larger number of uplink connections. This is true since most of the devices to be added incur machine-type communications which is dominantly upstream. Can current LTE network withstand this challenge? To answer this question, the joint performance of random access process and the uplink data transmission should be investigated. These two problems have been classically treated in the literature in a disjoint fashion. In this paper, they are jointly analyzed as an inseparable couple. To do that, a tandem queuing model is adopted whereby devices are represented as spatially interacting queues. The interaction between queues is governed by the mutual inter-cell and intra-cell interference. To that end, a joint stochastic geometry and queueing theory model is exploited to study this problem and a spatiotemporal analytical model is developed accordingly. Network stability and scalability are two prime performance criteria for performance assessment. In light of these two criteria, the developed model is poised to offer valuable insights into efficient access and resource allocation strategies.Citation
Gharbieh M, ElSawy H, Bader A, Alouini M-S (2017) A spatiotemporal model for the LTE uplink: Spatially interacting tandem queues approach. 2017 IEEE International Conference on Communications (ICC). Available: http://dx.doi.org/10.1109/ICC.2017.7996535.Conference/Event name
2017 IEEE International Conference on Communications, ICC 2017Additional Links
http://ieeexplore.ieee.org/document/7996535/ae974a485f413a2113503eed53cd6c53
10.1109/ICC.2017.7996535