5G antenna array with wide-angle beam steering and dual linear polarizations
Type
Conference PaperKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Integrated Microwave Packaging Antennas and Circuits Technology (IMPACT) Lab
Date
2017-10-25Online Publication Date
2017-10-25Print Publication Date
2017-07Permanent link to this record
http://hdl.handle.net/10754/625950
Metadata
Show full item recordAbstract
In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.Citation
Klionovski K, Shamim A, Sharawi MS (2017) 5G antenna array with wide-angle beam steering and dual linear polarizations. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Available: http://dx.doi.org/10.1109/apusncursinrsm.2017.8072777.Additional Links
http://ieeexplore.ieee.org/document/8072777/ae974a485f413a2113503eed53cd6c53
10.1109/apusncursinrsm.2017.8072777
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Guest Editorial Antenna-in-Package, Antenna-on-Chip, Antenna-IC Interface: Joint Design and CointegrationHong, Wonbin; Maaskant, Rob; Liu, Duixian; Wang, Hua; Shamim, Atif; Smolders, Bart; Manteuffel, DIrk; Zhang, Yueping (IEEE Antennas and Wireless Propagation Letters, Institute of Electrical and Electronics Engineers (IEEE), 2019-11-05) [Article]The twenty peer-reviewed letters in this special section examine the design and cointegration of antenna-in-package (AiP), antenna-on-chip (AoC), and antenna ICs (AIC). The letters are categorized in the four distinctive categories: 1) Fabrication technologies (four); 2) Measurement strategies; 3) Applications; and 4) New design and integration strategies. Fruition of major thrusts such as 5G/6G, high-resolution radar and imaging, autonomous driving, and space technology are highly intertwined with the advance of applied electromagnetics. Miniaturization and seamless integration of microwave components and radio systems can enable superior performance, form factor, and cost efficiencies leading to enhanced proliferation of such applications. Historically, radio frequency front ends, antennas, and microwave components have separately evolved using distinct fabrication and measurement technologies.
-
Miniaturized, low power, wireless transmitter and receiver with on-chip antenna, and wireless coupling of on-chip and off-chip antennaShamim, Atif; Arsalan, Muhammad; Roy, Langis (2010-04-22) [Patent]A miniaturized, low power RF transmitter with a dual mode active on-chip antenna/inductor is disclosed in which antenna also serves as the oscillator inductor. Also disclosed is a miniaturized low power RF receiver with an on-chip antenna; and a RF transmitter system wherein an on-chip antenna is wirelessly coupled to an off chip patch antenna are disclosed. Advantageously, the TX chip is housed in a low loss, e.g. Low Temperature Co-fired Ceramic (LTCC) package with a patch antenna to provide a System-on-Package implementation comprising electromagnetic coupling between a RF TX chip comprising an integrated on-chip antenna and a package antenna. The on-chip antenna feeds the LTCC patch antenna through aperture coupling, thus negating the need for RF buffer amplifiers, matching elements, baluns, bond wires and package transmission lines, and significantly increases the gain and range of the module with respect to the on-chip antenna alone, without deterioration of the circuit performance and power consumption. Exemplary embodiments are disclosed which may be fabricated using standard CMOS technology, for operation in the 5 GHz U-NII band for applications such as miniaturized, low cost, low power wireless devices and sensor systems.
-
Antenna subset selection at multi-antenna relay with adaptive modulationChoi, Seyeong; Hasna, Mazen Omar; Yang, Hongchuan; Alouini, Mohamed-Slim (Wireless Communications and Mobile Computing, Wiley, 2011-06-01) [Article]In this paper, we proposed several antenna selection schemes for cooperative diversity systems with adaptive transmission. The proposed schemes were based on dual-hop relaying where a relay with multiple-antenna capabilities at reception and transmission is deployed between the source and the destination nodes. We analyzed the performance of the proposed schemes by quantifying the average spectral efficiency and the outage probability. We also investigated the trade-off of performance and complexity by comparing the average number of active antennas, path estimations, and signal-to-noise ratio comparisons of the different proposed schemes. Copyright © 2011 John Wiley & Sons, Ltd.