• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Intrinsic point defects in inorganic perovskite CsPbI3 from first-principles prediction

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    12E5001535.pdf
    Size:
    1.305Mb
    Format:
    PDF
    Description:
    Main article
    Download
    Type
    Article
    Authors
    Li, Yifan
    Zhang, Chenhui cc
    Zhang, Xixiang cc
    Huang, Dan
    Shen, Qian cc
    Cheng, Yingchun cc
    Huang, Wei cc
    KAUST Department
    Material Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2017-10-19
    Online Publication Date
    2017-10-19
    Print Publication Date
    2017-10-16
    Permanent link to this record
    http://hdl.handle.net/10754/625917
    
    Metadata
    Show full item record
    Abstract
    Cubic inorganic perovskite CsPbI3 is a direct bandgap semiconductor, which is promising for optoelectronic applications, such as solar cells, light emitting diodes, and lasers. The intrinsic defects in semiconductors play crucial roles in determining carrier conductivity, the efficiency of carrier recombination, and so on. However, the thermodynamic stability and intrinsic defect physics are still unclear for cubic CsPbI3. By using the first-principles calculations, we study the thermodynamic process and find out that the window for CsPbI3 growth is quite narrow and the concentration of Cs is important for cubic CsPbI3 growth. Under Pb-rich conditions, VPb and VI can pin the Fermi energy in the middle of the bandgap, which results in a low carrier concentration. Under Pb-poor conditions, VPb is the dominant defect and the material has a high concentration of hole carriers with a long lifetime. Our present work gives an insight view of the defect physics of cubic CsPbI3 and will be beneficial for optoelectronic applications based on cubic CsPbI3 and other analogous inorganic perovskites.
    Citation
    Li Y, Zhang C, Zhang X, Huang D, Shen Q, et al. (2017) Intrinsic point defects in inorganic perovskite CsPbI3 from first-principles prediction. Applied Physics Letters 111: 162106. Available: http://dx.doi.org/10.1063/1.5001535.
    Sponsors
    This work was financially supported by the National Natural Science Foundation of China (Nos. 11504169, 61575094, 61664003, and 21673118), the National Basic Research Program of China (No. 2015CB932200), and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (No. 16KJB150018). This work was also sponsored by the Qing Lan Project. For computer time, this research used the resources of the Supercomputing Laboratory at King Abdullah University of Science & Technology (KAUST) in Thuwal, Saudi Arabia.
    Publisher
    AIP Publishing
    Journal
    Applied Physics Letters
    DOI
    10.1063/1.5001535
    Additional Links
    http://aip.scitation.org/doi/abs/10.1063/1.5001535
    ae974a485f413a2113503eed53cd6c53
    10.1063/1.5001535
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.