Show simple item record

dc.contributor.authorRoik, Anna Krystyna
dc.contributor.authorRöthig, Till
dc.contributor.authorPogoreutz, Claudia
dc.contributor.authorVoolstra, Christian R.
dc.date.accessioned2017-10-19T07:10:41Z
dc.date.available2017-10-19T07:10:41Z
dc.date.issued2017-10-17
dc.identifier.citationRoik A, Rothig T, Pogoreutz C, Voolstra CR (2017) Coral reef carbonate budgets and ecological drivers in the naturally high temperature and high alkalinity environment of the Red Sea. Available: http://dx.doi.org/10.1101/203885.
dc.identifier.doi10.1101/203885
dc.identifier.urihttp://hdl.handle.net/10754/625902
dc.description.abstractThe coral structural framework is crucial for maintaining reef ecosystem function and services. In the central Red Sea, a naturally high alkalinity is beneficial to reef growth, but rising water temperatures impair the calcification capacity of reef-building organisms. However, it is currently unknown how beneficial and detrimental factors affect the balance between calcification and erosion, and thereby the overall growth of the reef framework. To provide insight into present-day carbonate budgets and reef growth dynamics in the central Red Sea, we measured in situ net-accretion and net-erosion rates (Gnet) by deployment of limestone blocks and estimated census-based carbonate budgets (Gbudget) in four reef sites along a cross-shelf gradient (25 km). We assessed abiotic variables (i.e., temperature, inorganic nutrients, and carbonate system variables) and biotic drivers (i.e., calcifier and bioeroder abundances). On average, total alkalinity AT (2346-2431 μmol kg-1), aragonite saturation state (4.5-5.2 Ωa), and pCO2 (283-315 μatm) were close to estimates of pre-industrial global ocean surface waters. Despite these calcification-favorable carbonate system conditions, Gnet and Gbudget encompassed positive (offshore) and negative net-production (midshore-lagoon and exposed nearshore site) estimates. Notably, Gbudget maxima were lower compared to reef growth from pristine Indian Ocean sites. Yet, a comparison with historical data from the northern Red Sea suggests that overall reef growth in the Red Sea has likely remained similar since 1995. When assessing sites across the shelf gradient, AT correlated well with reef growth rates (ρ = 0.89), while temperature was a weaker, negative correlate (ρ = -0.71). Further, AT explained about 65% of Gbudget in a best fitting distance-based linear model. Interestingly, parrotfish abundances added up to 82% of explained variation, further substantiating recent studies highlighting the importance of parrotfish to reef ecosystem function. Our study provides a baseline that will be particularly useful in assessing future trajectories of reef growth capacities in the Red Sea under continuous ocean warming and acidification.
dc.description.sponsorshipWe thank CMOR for assistance with field operations. This study was supported by funding from King Abdullah University of Science and Technology (KAUST).
dc.publisherCold Spring Harbor Laboratory
dc.relation.urlhttps://www.biorxiv.org/content/early/2017/10/16/203885
dc.rightsThe copyright holder for this preprint is the author/funder. It is made available under a CC-BY 4.0 International license.
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleCoral reef carbonate budgets and ecological drivers in the naturally high temperature and high alkalinity environment of the Red Sea
dc.typePreprint
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentMarine Science Program
dc.contributor.departmentRed Sea Research Center (RSRC)
dc.eprint.versionPre-print
kaust.personRoik, Anna Krystyna
kaust.personRöthig, Till
kaust.personPogoreutz, Claudia
kaust.personVoolstra, Christian R.
refterms.dateFOA2018-06-14T05:25:55Z
display.summary<p>This record has been merged with an existing record at: <a href="http://hdl.handle.net/10754/629445">http://hdl.handle.net/10754/629445</a>.</p>


Files in this item

Thumbnail
Name:
203885.full.pdf
Size:
7.768Mb
Format:
PDF
Description:
Preprint

This item appears in the following Collection(s)

Show simple item record

The copyright holder for this preprint is the author/funder. It is made available under a CC-BY 4.0 International license.
Except where otherwise noted, this item's license is described as The copyright holder for this preprint is the author/funder. It is made available under a CC-BY 4.0 International license.