• Login
    View Item 
    •   Home
    • Research
    • Conference Papers
    • View Item
    •   Home
    • Research
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Knudsen-Like Scaling May Be Inappropriate for Gas Shales

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    SPE187068-MS.PDF
    Size:
    982.0Kb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Conference Paper
    Authors
    Patzek, Tadeusz cc
    KAUST Department
    Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC)
    Energy Resources and Petroleum Engineering
    Physical Science and Engineering (PSE) Division
    Date
    2017-10-09
    Online Publication Date
    2017-10-09
    Print Publication Date
    2017
    Permanent link to this record
    http://hdl.handle.net/10754/625900
    
    Metadata
    Show full item record
    Abstract
    Summary We assert that a classification of gas flow regimes in shales that is widely accepted in the petroleum industry, may be inconsistent with the physics of high-pressure gas flow in capillaries. This classification follows from the 1946 work by Brown et al. (1946) that deals with the flow of gases in large industrial metal pipes, elbows and orifices under vacuum, with gas pressures of the order of 1 mm Hg or less. In another pioneering paper that year, Tsien (1946) analyzed the hypersonic flight of rockets in the thermosphere (above 50 miles of altitude), and established the widely accepted Knudsen flow regimes for the high-Reynolds, high-Mach flow of rarified gases. We show why both these papers are not quite applicable to flow of compressed gas in the hot, high-pressure shale pores with rough surfaces. In addition, it may be inappropriate to use the capillary tube metaphor to describe shale micropores or microcracks, simply because each is fed with gas by dozens or hundreds of intricately connected nanopores, which themselves may be slits rather than circular cylinders, and are charged with the dense, liquid-like gas. In the small-scale, low-velocity flows of gases, failure of the standard Navier-Stokes description (the standard Darcy law in petroleum engineering) can be quantified by the Knudsen number, ratio of the mean free path, λ, of gas molecules at the reservoir pressure and temperature to the characteristic pore radius, R. We carefully enumerate the multiple restrictive conditions that must hold for the slip-flow boundary condition to emerge. We also describe the dependence of the slip correction factor on the gas pressure and temperature, as well as the median pore size and rock roughness. In the derivation, we revisit the original approaches of Helmholtz and von Piotrowski (1860) and Maxwell, Niven (1890), which were somehow lost in the multiple translations from physics to petroleum engineering. For example, in Barnett mudrocks, naturally occurring pores are predominantly associated with organic matter and pyrite framboids. In organic matter, the median pore length is 100 nm, Loucks et al. (2009), and the pore radii are likely to be between 1 and 10 nm, Clarkson et al. (2013). Other thermally mature mudrocks may be similar, Ross and Bustin (2009), or not, Clarkson et al. (2013). With R = 50 nm, the ratio of λ/R is less than 0.1 for pressures exceeding 60 bars. When we compare the actual slip-flow correction with the accepted classification of gas flow regimes, there is an order of magnitude discrepancy. It appears that our new classification is conservative for pores larger than 5 nm in radius. Therefore, unless the fraction of gas molecules that are bounced off diffusively from the rough pore walls is very low, slip flow is unlikely to dominate in shales. The generally accepted
    Citation
    Patzek TW (2017) Knudsen-Like Scaling May Be Inappropriate for Gas Shales. SPE Annual Technical Conference and Exhibition. Available: http://dx.doi.org/10.2118/187068-ms.
    Publisher
    Society of Petroleum Engineers (SPE)
    Journal
    SPE Annual Technical Conference and Exhibition
    DOI
    10.2118/187068-ms
    Additional Links
    https://www.onepetro.org/conference-paper/SPE-187068-MS
    ae974a485f413a2113503eed53cd6c53
    10.2118/187068-ms
    Scopus Count
    Collections
    Conference Papers; Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC); Physical Science and Engineering (PSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.