Show simple item record

dc.contributor.authorFadnavis, Suvarna
dc.contributor.authorKalita, Gayatry
dc.contributor.authorKumar, K. Ravi
dc.contributor.authorGasparini, Blaž
dc.contributor.authorLi, Jui-Lin Frank
dc.date.accessioned2017-10-11T12:03:22Z
dc.date.available2017-10-11T12:03:22Z
dc.date.issued2017-09-28
dc.identifier.citationFadnavis S, Kalita G, Kumar KR, Gasparini B, Li J-LF (2017) Potential impact of carbonaceous aerosol on the upper troposphere and lower stratosphere (UTLS) and precipitation during Asian summer monsoon in a global model simulation. Atmospheric Chemistry and Physics 17: 11637–11654. Available: http://dx.doi.org/10.5194/acp-17-11637-2017.
dc.identifier.issn1680-7324
dc.identifier.doi10.5194/acp-17-11637-2017
dc.identifier.urihttp://hdl.handle.net/10754/625856
dc.description.abstractRecent satellite observations show efficient vertical transport of Asian pollutants from the surface to the upper-level anticyclone by deep monsoon convection. In this paper, we examine the transport of carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), into the monsoon anticyclone using of ECHAM6-HAM, a global aerosol climate model. Further, we investigate impacts of enhanced (doubled) carbonaceous aerosol emissions on the upper troposphere and lower stratosphere (UTLS), underneath monsoon circulation and precipitation from sensitivity simulations. The model simulation shows that boundary layer aerosols are transported into the monsoon anticyclone by the strong monsoon convection from the Bay of Bengal, southern slopes of the Himalayas and the South China Sea. Doubling of emissions of both BC and OC aerosols over Southeast Asia (10° S–50° N, 65–155° E) shows that lofted aerosols produce significant warming (0.6–1 K) over the Tibetan Plateau (TP) near 400–200 hPa and instability in the middle/upper troposphere. These aerosols enhance radiative heating rates (0.02–0.03 K day−1) near the tropopause. The enhanced carbonaceous aerosols alter aerosol radiative forcing (RF) at the surface by −4.74 ± 1.42 W m−2, at the top of the atmosphere (TOA) by +0.37 ± 0.26 W m−2 and in the atmosphere by +5.11 ± 0.83 W m−2 over the TP and Indo-Gangetic Plain region (15–35° N, 80–110° E). Atmospheric warming increases vertical velocities and thereby cloud ice in the upper troposphere. Aerosol induced anomalous warming over the TP facilitates the relative strengthening of the monsoon Hadley circulation and increases moisture inflow by strengthening the cross-equatorial monsoon jet. This increases precipitation amounts over India (1–4 mm day−1) and eastern China (0.2–2 mm day−1). These results are significant at the 99 % confidence level.
dc.description.sponsorshipThe authors acknowledges with gratitude the High Power Computing Centre (HPC) in IITM, Pune, India, for providing computer resources. The authors are thankful to the anonymous reviewers and co-editor for valuable suggestions.
dc.publisherCopernicus GmbH
dc.relation.urlhttps://www.atmos-chem-phys.net/17/11637/2017/
dc.rightsThis work is distributed under the Creative Commons Attribution 3.0 License.
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.titlePotential impact of carbonaceous aerosol on the upper troposphere and lower stratosphere (UTLS) and precipitation during Asian summer monsoon in a global model simulation
dc.typeArticle
dc.contributor.departmentKing Abdullah University of Science and Technology, Thuwal, Saudi Arabia
dc.identifier.journalAtmospheric Chemistry and Physics
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionIndian Institute of Tropical Meteorology, Pune, India
dc.contributor.institutionInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
dc.contributor.institutionJet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
kaust.personKumar, K. Ravi
refterms.dateFOA2018-06-13T18:58:06Z


Files in this item

Thumbnail
Name:
acp-17-11637-2017.pdf
Size:
8.155Mb
Format:
PDF
Description:
Main article
Thumbnail
Name:
acp-17-11637-2017-supplement.pdf
Size:
347.5Kb
Format:
PDF
Description:
Supplemental files

This item appears in the following Collection(s)

Show simple item record

This work is distributed under the Creative Commons Attribution 3.0 License.
Except where otherwise noted, this item's license is described as This work is distributed under the Creative Commons Attribution 3.0 License.