Bio-Inspired Carbon Monoxide Sensors with Voltage-Activated Sensitivity
Type
ArticleAuthors
Savagatrup, SucholSchroeder, Vera
He, Xin

Lin, Sibo
He, Maggie
Yassine, Omar

Salama, Khaled N.

Zhang, Xixiang

Swager, Timothy M.

KAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Material Science and Engineering Program
Physical Science and Engineering (PSE) Division
Sensors Lab
KAUST Grant Number
CRF-2015-SENSORS-2719Date
2017-10-04Online Publication Date
2017-10-04Print Publication Date
2017-11-06Permanent link to this record
http://hdl.handle.net/10754/625847
Metadata
Show full item recordAbstract
Carbon monoxide (CO) outcompetes oxygen when binding to the iron center of hemeproteins, leading to a reduction in blood oxygen level and acute poisoning. Harvesting the strong specific interaction between CO and the iron porphyrin provides a highly selective and customizable sensor. We report the development of chemiresistive sensors with voltage-activated sensitivity for the detection of CO comprising iron porphyrin and functionalized single-walled carbon nanotubes (F-SWCNTs). Modulation of the gate voltage offers a predicted extra dimension for sensing. Specifically, the sensors show a significant increase in sensitivity toward CO when negative gate voltage is applied. The dosimetric sensors are selective to ppm levels of CO and functional in air. UV/Vis spectroscopy, differential pulse voltammetry, and density functional theory reveal that the in situ reduction of FeIII to FeII enhances the interaction between the F-SWCNTs and CO. Our results illustrate a new mode of sensors wherein redox active recognition units are voltage-activated to give enhanced and highly specific responses.Citation
Savagatrup S, Schroeder V, He X, Lin S, He M, et al. (2017) Bio-Inspired Carbon Monoxide Sensors with Voltage-Activated Sensitivity. Angewandte Chemie International Edition. Available: http://dx.doi.org/10.1002/anie.201707491.Sponsors
This work was supported by the KAUST sensor project CRF-2015-SENSORS-2719 and the Army Research Office through the Institute for Soldier Nanotechnologies and the National Science Foundation (DMR-1410718). S.L. was supported by an F32 Ruth L. Kirschstein National Research Service Award. M.H. was supported by NIH Training Grant T32ES007020. We thank Dr. Lionel Moh for the designs of the substrates for our sensors and Dr. Joseph Walish for fabricating the gas enclosures.Publisher
WileyJournal
Angewandte ChemieAdditional Links
http://onlinelibrary.wiley.com/doi/10.1002/anie.201707491/fullae974a485f413a2113503eed53cd6c53
10.1002/anie.201707491