Show simple item record

dc.contributor.authorGómez-Rubio, Virgilio
dc.contributor.authorRue, Haavard
dc.date.accessioned2017-10-09T06:12:01Z
dc.date.available2017-10-09T06:12:01Z
dc.date.issued2017-10-06
dc.identifier.citationGómez-Rubio V, Rue H (2017) Markov chain Monte Carlo with the Integrated Nested Laplace Approximation. Statistics and Computing. Available: http://dx.doi.org/10.1007/s11222-017-9778-y.
dc.identifier.issn0960-3174
dc.identifier.issn1573-1375
dc.identifier.doi10.1007/s11222-017-9778-y
dc.identifier.urihttp://hdl.handle.net/10754/625832
dc.description.abstractThe Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with mixture models. Furthermore, in some of the examples we could exploit INLA within MCMC to make joint inference on an ensemble of model parameters.
dc.description.sponsorshipVirgilio Gómez-Rubio has been supported by Grant PPIC-2014-001, funded by Consejería de Educación, Cultura y Deportes (JCCM) and FEDER, and Grant MTM2016-77501-P, funded by Ministerio de Economía y Competitividad. We would also like to thank Prof. Aki Vehtari for his comments on a preliminary version of this paper.
dc.publisherSpringer Nature
dc.relation.urlhttp://link.springer.com/article/10.1007/s11222-017-9778-y
dc.rightsThe final publication is available at Springer via http://dx.doi.org/10.1007/s11222-017-9778-y
dc.subjectBayesian Lasso
dc.subjectINLA MCMC
dc.subjectMissing values
dc.subjectSpatial models
dc.subjectMixture models
dc.titleMarkov chain Monte Carlo with the Integrated Nested Laplace Approximation
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentStatistics Program
dc.identifier.journalStatistics and Computing
dc.eprint.versionPost-print
dc.contributor.institutionDepartment of Mathematics, School of Industrial Engineering, Universidad de Castilla-La Mancha, Albacete, Spain
dc.identifier.arxivid1701.07844
kaust.personRue, Haavard
refterms.dateFOA2018-10-06T00:00:00Z
dc.date.published-online2017-10-06
dc.date.published-print2018-09
dc.date.posted2017-01-26


Files in this item

Thumbnail
Name:
inla-mcmc.pdf
Size:
592.3Kb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record