A state space approach for the eigenvalue problem of marine risers
Type
ArticleDate
2017-10-05Online Publication Date
2017-10-05Print Publication Date
2018-03Permanent link to this record
http://hdl.handle.net/10754/625829
Metadata
Show full item recordAbstract
A numerical state-space approach is proposed to examine the natural frequencies and critical buckling limits of marine risers. A large axial tension in the riser model causes numerical limitations. These limitations are overcome by using the modified Gram–Schmidt orthonormalization process as an intermediate step during the numerical integration process with the fourth-order Runge–Kutta scheme. The obtained results are validated against those obtained with other numerical methods, such as the finite-element, Galerkin, and power-series methods, and are found to be in good agreement. The state-space approach is shown to be computationally more efficient than the other methods. Also, we investigate the effect of a high applied tension, a high apparent weight, and higher-order modes on the accuracy of the numerical scheme. We demonstrate that, by applying the orthonormalization process, the stability and convergence of the approach are significantly improved.Citation
Alfosail FK, Nayfeh AH, Younis MI (2017) A state space approach for the eigenvalue problem of marine risers. Meccanica. Available: http://dx.doi.org/10.1007/s11012-017-0769-z.Sponsors
This research was made possible through the fund and resources of the IT Research Computing at King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia. Also, the first author acknowledges the support of Saudi Aramco.Publisher
Springer NatureJournal
MeccanicaAdditional Links
http://link.springer.com/article/10.1007/s11012-017-0769-zae974a485f413a2113503eed53cd6c53
10.1007/s11012-017-0769-z