Show simple item record

dc.contributor.authorLei, Hongjiang
dc.contributor.authorZhang, Huan
dc.contributor.authorAnsari, Imran Shafique
dc.contributor.authorRen, Zhi
dc.contributor.authorpan, Gaofeng
dc.contributor.authorQaraqe, Khalid A.
dc.contributor.authorAlouini, Mohamed-Slim
dc.date.accessioned2017-10-05T12:47:10Z
dc.date.available2017-10-05T12:47:10Z
dc.date.issued2017-10-02
dc.identifier.citationLei H, Zhang H, Ansari IS, Ren Z, Pan G, et al. (2017) On Secrecy Outage of Relay Selection in Underlay Cognitive Radio Networks over Nakagami-m Fading Channels. IEEE Transactions on Cognitive Communications and Networking: 1–1. Available: http://dx.doi.org/10.1109/TCCN.2017.2758372.
dc.identifier.issn2332-7731
dc.identifier.doi10.1109/TCCN.2017.2758372
dc.identifier.urihttp://hdl.handle.net/10754/625821
dc.description.abstractIn this paper, the secrecy outage performance of an underlay cognitive decode-and-forward relay network over independent but not necessarily identical distributed (i.n.i.d) Nakagami-m fading channels is investigated, in which the secondary user transmitter communicates with the secondary destination via relays, and an eavesdropper attempts to overhear the information. Based on whether the channel state information (CSI) of the wiretap links is available or not, we analyze the secrecy outage performance with optimal relay selection (ORS) and suboptimal relay selection (SRS) schemes, and multiple relays combining scheme (MRC) scheme is considered for comparison purpose. The exact and asymptotic closed-form expressions for the secrecy outage probability with three different relay selection schemes are derived and verified by Monte-Carlo simulations. The numerical results illustrate that ORS scheme always outperforms SRS and MRC schemes, and SRS scheme is better than MRC scheme in the lower fading parameters scenario. Furthermore, through asymptotic analysis, we find that these three different schemes achieve the same secrecy diversity order, which is determined by the number of the relays, and the fading parameters of the links among the relays and the destination.
dc.description.sponsorshipThis work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61471076, Chinese Scholarship Council under Grant 201607845004, the Program for Changjiang Scholars and Innovative Research Team in University under Grant IRT 16R72, the special fund for Key Lab of Chongqing Municipal Education Commission, the Project of Fundamental and Frontier Research Plan of Chongqing under Grant cstc2015jcyjBX0085 and cstc2017jcyjAX0204, and the Scientific and Technological Research Program of Chongqing Municipal Education Commission under Grant KJ1600413 and KJ1704088. Parts of this publication were made possible by NPRP (National Priorities Research Program) grant # NPRP8-648-2-273.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttp://ieeexplore.ieee.org/document/8054684/
dc.rights(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
dc.subjectClosed-form solutions
dc.subjectCommunication system security
dc.subjectInterference
dc.subjectRayleigh channels
dc.subjectRelays
dc.subjectWireless communication
dc.titleOn Secrecy Outage of Relay Selection in Underlay Cognitive Radio Networks over Nakagami-m Fading Channels
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.identifier.journalIEEE Transactions on Cognitive Communications and Networking
dc.eprint.versionPost-print
dc.contributor.institutionChongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
dc.contributor.institutionDepartment of Electrical and Computer Engineering (ECEN), Texas A&M University at Qatar (TAMUQ), Education City, Doha 23874, Qatar.
dc.contributor.institutionSchool of Computing and Communications, Lancaster University, LA1 4WA, UK.
kaust.personAlouini, Mohamed-Slim
refterms.dateFOA2018-06-13T15:24:53Z
dc.date.published-online2017-10-02
dc.date.published-print2017-12


Files in this item

Thumbnail
Name:
08054684.pdf
Size:
4.673Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record