Type
ArticleDate
2017-08-09Online Publication Date
2017-08-09Print Publication Date
2017-09-06Permanent link to this record
http://hdl.handle.net/10754/625806
Metadata
Show full item recordAbstract
The mechanism of streamer branching remains one of the unsolved problems of low-temperature plasma physics. The understanding of this phenomenon requires very high-fidelity models that include, for instance, the kinetic description of electrons. In this paper, we use a two-dimensional particle-in-cell Monte Carlo collisional model to study the branching of anode-directed streamers propagating through short cathode-anode gap filled with atmospheric-pressure CO2 gas. We observe three key phenomena leading to the streamer branching at the considered conditions: flattening of the streamer head, the decrease of the streamer head thickness, and the generation at the streamer head of electrons having the energy larger than 50 eV. For the conditions of our studies, the non-homogeneous distribution of such energetic electrons at the streamer head is probably the primary mechanism responsible for the streamer branching.Citation
Levko D, Pachuilo M, Raja LL (2017) Particle-in-cell modeling of streamer branching in CO2 gas. Journal of Physics D: Applied Physics 50: 354004. Available: http://dx.doi.org/10.1088/1361-6463/aa7e6c.Sponsors
The research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).Publisher
IOP Publishingae974a485f413a2113503eed53cd6c53
10.1088/1361-6463/aa7e6c