• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Zhang, Yibo
    Shin, Yoonjung
    Sung, Kevin
    Yang, Sam
    Chen, Harrison
    Wang, Hongda
    Teng, Da
    Rivenson, Yair
    Kulkarni, Rajan P.
    Ozcan, Aydogan cc
    Date
    2017-08-11
    Online Publication Date
    2017-08-11
    Print Publication Date
    2017-08
    Permanent link to this record
    http://hdl.handle.net/10754/625779
    
    Metadata
    Show full item record
    Abstract
    High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3′-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm2. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings.
    Citation
    Zhang Y, Shin Y, Sung K, Yang S, Chen H, et al. (2017) 3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy. Science Advances 3: e1700553. Available: http://dx.doi.org/10.1126/sciadv.1700553.
    Sponsors
    The Ozcan Research Group at UCLA acknowledges the support of the Presidential Early Career Award for Scientists and Engineers, the Army Research Office (ARO) (W911NF-13-1-0419 and W911NF-13-1-0197), the ARO Life Sciences Division, the NSF CBET Division Biophotonics Program, the NSF Emerging Frontiers in Research and Innovation Award, the NSF EAGER Award, the NSF INSPIRE Award, NSF Partnerships for Innovation: Building Innovation Capacity Program, Office of Naval Research, the NIH, the Howard Hughes Medical Institute, Vodafone Americas Foundation, the Mary Kay Foundation, Steven & Alexandra Cohen Foundation, and King Abdullah University of Science and Technology. This work is based on the research performed in a laboratory renovated by the NSF under grant no. 0963183, which is an award funded under the American Recovery and Reinvestment Act of 2009.
    Publisher
    American Association for the Advancement of Science (AAAS)
    Journal
    Science Advances
    DOI
    10.1126/sciadv.1700553
    ae974a485f413a2113503eed53cd6c53
    10.1126/sciadv.1700553
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.