Vehicle Classification and Speed Estimation Using Combined Passive Infrared/Ultrasonic Sensors
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Date
2017-09-18Online Publication Date
2017-09-18Print Publication Date
2018-05Permanent link to this record
http://hdl.handle.net/10754/625775
Metadata
Show full item recordAbstract
In this paper, a new sensing device that can simultaneously monitor traffic congestion and urban flash floods is presented. This sensing device is based on the combination of passive infrared sensors (PIRs) and ultrasonic rangefinder, and is used for real-time vehicle detection, classification, and speed estimation in the context of wireless sensor networks. This framework relies on dynamic Bayesian Networks to fuse heterogeneous data both spatially and temporally for vehicle detection. To estimate the speed of the incoming vehicles, we first use cross correlation and wavelet transform-based methods to estimate the time delay between the signals of different sensors. We then propose a calibration and self-correction model based on Bayesian Networks to make a joint inference by all sensors about the speed and the length of the detected vehicle. Furthermore, we use the measurements of the ultrasonic and the PIR sensors to perform vehicle classification. Validation data (using an experimental dual infrared and ultrasonic traffic sensor) show a 99% accuracy in vehicle detection, a mean error of 5 kph in vehicle speed estimation, a mean error of 0.7m in vehicle length estimation, and a high accuracy in vehicle classification. Finally, we discuss the computational performance of the algorithm, and show that this framework can be implemented on low-power computational devices within a wireless sensor network setting. Such decentralized processing greatly improves the energy consumption of the system and minimizes bandwidth usage.Citation
Odat E, Shamma JS, Claudel C (2017) Vehicle Classification and Speed Estimation Using Combined Passive Infrared/Ultrasonic Sensors. IEEE Transactions on Intelligent Transportation Systems: 1–14. Available: http://dx.doi.org/10.1109/TITS.2017.2727224.Additional Links
http://ieeexplore.ieee.org/document/8039243/ae974a485f413a2113503eed53cd6c53
10.1109/TITS.2017.2727224