Show simple item record

dc.contributor.authorNgugi, David
dc.contributor.authorMiyake, Sou
dc.contributor.authorCahill, Matthew
dc.contributor.authorVinu, Manikandan
dc.contributor.authorHackmann, Timothy J.
dc.contributor.authorBlom, Jochen
dc.contributor.authorTietbohl, Matthew
dc.contributor.authorBerumen, Michael L.
dc.contributor.authorStingl, Ulrich
dc.date.accessioned2017-10-03T12:49:37Z
dc.date.available2017-10-03T12:49:37Z
dc.date.issued2017-08-23
dc.identifier.citationNgugi DK, Miyake S, Cahill M, Vinu M, Hackmann TJ, et al. (2017) Genomic diversification of giant enteric symbionts reflects host dietary lifestyles. Proceedings of the National Academy of Sciences 114: E7592–E7601. Available: http://dx.doi.org/10.1073/pnas.1703070114.
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.pmid28835538
dc.identifier.doi10.1073/pnas.1703070114
dc.identifier.urihttp://hdl.handle.net/10754/625748
dc.description.abstractHerbivorous surgeonfishes are an ecologically successful group of reef fish that rely on marine algae as their principal food source. Here, we elucidated the significance of giant enteric symbionts colonizing these fishes regarding their roles in the digestive processes of hosts feeding predominantly on polysiphonous red algae and brown Turbinaria algae, which contain different polysaccharide constituents. Using metagenomics, single-cell genomics, and metatranscriptomic analyses, we provide evidence of metabolic diversification of enteric microbiota involved in the degradation of algal biomass in these fishes. The enteric microbiota is also phylogenetically and functionally simple relative to the complex lignocellulose-degrading microbiota of terrestrial herbivores. Over 90% of the enzymes for deconstructing algal polysaccharides emanate from members of a single bacterial lineage,
dc.description.sponsorshipWe thank the King Abdullah University of Science and Technology (KAUST) Bioscience Core Lab, the Coastal and Marine Resources Core Lab, and T. Sinclair-Taylor for their technical and logistical support. We also thank John Howard Choat (James Cook University, Queensland) for his insights on surgeonfish nutrition, Andreas Brune (Max Planck Institute for Terrestrial Microbiology, Marburg) for assistance with bacterial nomenclature, and Calder J. Atta (KAUST) for the fish illustrations. This work was supported by KAUST through the Saudi Economic and Development Company Research Excellence Award Program (U.S.).
dc.publisherProceedings of the National Academy of Sciences
dc.relation.urlhttp://www.pnas.org/content/early/2017/08/22/1703070114.full
dc.subjectMarine algae
dc.subjectCarbohydrases
dc.subjectEpulopiscium
dc.subjectGiant Enteric Symbionts
dc.subjectPiscine Herbivores
dc.titleGenomic diversification of giant enteric symbionts reflects host dietary lifestyles
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentMarine Science Program
dc.contributor.departmentOffice of the VP
dc.contributor.departmentRed Sea Research Center (RSRC)
dc.identifier.journalProceedings of the National Academy of Sciences
dc.contributor.institutionTemasek Life Sciences Laboratory, National University of Singapore, Singapore 117604.
dc.contributor.institutionDepartment of Animal Sciences, University of Florida, Gainesville, FL 32611.
dc.contributor.institutionBioinformatics and Systems Biology, Justus Liebig University of Giessen, D-35392 Giessen, Germany.
dc.contributor.institutionInstitute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611.
kaust.personNgugi, David
kaust.personMiyake, Sou
kaust.personCahill, Matthew
kaust.personVinu, Manikandan
kaust.personTietbohl, Matthew
kaust.personBerumen, Michael L.
kaust.personStingl, Ulrich
dc.date.published-online2017-08-23
dc.date.published-print2017-09-05


This item appears in the following Collection(s)

Show simple item record