Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells
Name:
Accept version from Sci-hub_yang2017.pdf
Size:
1.333Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleAuthors
Yang, FanQian, Deping
Albalawi, Ahmed
Wu, Yang
Ma, Wei
Laquai, Frédéric

Tang, Zheng

Zhang, Fengling
Li, Weiwei

KAUST Department
Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC)KAUST Solar Center (KSC)
Material Science and Engineering Program
Physical Science and Engineering (PSE) Division
Date
2017Permanent link to this record
http://hdl.handle.net/10754/625739
Metadata
Show full item recordAbstract
We report a systematic study of the efficiency limitations of non-fullerene organic solar cells that exhibit a small energy loss (Eloss) between the polymer donor and the non-fullerene acceptor. To clarify the impact of Eloss on the performance of the solar cells, three thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers (PTPD3T, PTPD2T, and PTPDBDT) are employed as the electron donor, which all have complementary absorption spectra compared with the ITIC acceptor. The corresponding photovoltaic devices show that low Eloss (0.54 eV) in PTPDBDT:ITIC leads to a high open-circuit voltage (Voc) of 1.05 V, but also to a small quantum efficiency, and in turn photocurrent. The high Voc or small energy loss in the PTPDBDT-based solar cells is a consequence of less non-radiative recombination, whereas the low quantum efficiency is attributed to the unfavorable micro-phase separation, as confirmed by the steady-state and time-resolved photoluminescence experiments, grazing-incidence wide-angle X-ray scattering, and resonant soft X-ray scattering (R-SoXS) measurements. We conclude that to achieve high performance non-fullerene solar cells, it is essential to realize a large Voc with small Eloss while simultaneously maintaining a high quantum efficiency by manipulating the molecular interaction in the bulk-heterojunction.Citation
Yang F, Qian D, Balawi AH, Wu Y, Ma W, et al. (2017) Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells. Physical Chemistry Chemical Physics 19: 23990–23998. Available: http://dx.doi.org/10.1039/c7cp04780k.Sponsors
We are thankful for the support from the Ministry of science and technology (No. 2016YFA0200700). We thank Mr Qiang Wang and Mr Ralf Bovee at Eindhoven University of Technology for GPC analysis, Dr Cheng Wang and Dr Chenhui Zhu from Lawrence Berkeley National Laboratory for GIWAXS and R-SoXS measurement, Prof. Yi Zhou and Prof. Yongfang Li at Soochow University for steady state PL measurement, and Dr Xianjie Liu at Linköping University for UPS measurement. This work was supported by the Recruitment Program of Global Youth Experts of China. The work was further supported by the National Natural Science Foundation of China (21574138, 91233205, and 91633301) and the Strategic Priority Research Program (XDB12030200) of the Chinese Academy of Sciences. D. Q. and F. Z. acknowledge financial support from the Swedish Research Council (VR621-2013-5561) and the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No 200900971). X-ray data were acquired at beamlines 7.3.3 and 11.0.1.2 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Z. T. acknowledges financial support from the Alexander-von-Humboldt foundation. The research reported in this publication was supported by the funding from the King Abdullah University of Science and Technology (KAUST).Publisher
Royal Society of Chemistry (RSC)PubMed ID
28831480ae974a485f413a2113503eed53cd6c53
10.1039/c7cp04780k
Scopus Count
Related articles
- Fullerene-Free Organic Solar Cells with an Efficiency of 10.2% and an Energy Loss of 0.59 eV Based on a Thieno[3,4-c]Pyrrole-4,6-dione-Containing Wide Band Gap Polymer Donor.
- Authors: Hadmojo WT, Wibowo FTA, Ryu DY, Jung IH, Jang SY
- Issue date: 2017 Sep 27
- Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor.
- Authors: Jiang X, Xu Y, Wang X, Wu Y, Feng G, Li C, Ma W, Li W
- Issue date: 2017 Mar 15
- Alkylsilyl Fused Ring-Based Polymer Donor for Non-Fullerene Solar Cells with Record Open Circuit Voltage and Energy Loss.
- Authors: Huang B, Cheng Y, Jin H, Liu J, Huang X, Cui Y, Liao X, Yang C, Ma Z, Chen L
- Issue date: 2021 Nov
- Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells.
- Authors: Kang TE, Cho HH, Cho CH, Kim KH, Kang H, Lee M, Lee S, Kim B, Im C, Kim BJ
- Issue date: 2013 Feb
- Marked Consequences of Systematic Oligothiophene Catenation in Thieno[3,4-c]pyrrole-4,6-dione and Bithiopheneimide Photovoltaic Copolymers.
- Authors: Zhou N, Guo X, Ponce Ortiz R, Harschneck T, Manley EF, Lou SJ, Hartnett PE, Yu X, Horwitz NE, Mayorga Burrezo P, Aldrich TJ, López Navarrete JT, Wasielewski MR, Chen LX, Chang RP, Facchetti A, Marks TJ
- Issue date: 2015 Oct 7