• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Flame spread over inclined electrical wires with AC electric fields

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Lim, Seung J.
    Park, Sun H. cc
    Park, Jeong cc
    Fujita, Osamu cc
    Keel, Sang I.
    Chung, Suk Ho cc
    KAUST Department
    Clean Combustion Research Center
    Combustion and Laser Diagnostics Laboratory
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2017-07-21
    Online Publication Date
    2017-07-21
    Print Publication Date
    2017-11
    Permanent link to this record
    http://hdl.handle.net/10754/625698
    
    Metadata
    Show full item record
    Abstract
    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.
    Citation
    Lim SJ, Park SH, Park J, Fujita O, Keel SI, et al. (2017) Flame spread over inclined electrical wires with AC electric fields. Combustion and Flame 185: 82–92. Available: http://dx.doi.org/10.1016/j.combustflame.2017.07.010.
    Sponsors
    This research was supported by the SGER (C-D-2016-1210) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2016-2017). S.H. Chung was supported by King Abdullah University of Science and Technology, and O. Fujita was supported by JAXA as a candidate experiment for the third stage use of JEM/ISS titled “Evaluation of gravity impact on combustion phenomenon of solid material towards higher fire safety” (called as “FLARE”).
    Publisher
    Elsevier BV
    Journal
    Combustion and Flame
    DOI
    10.1016/j.combustflame.2017.07.010
    Additional Links
    http://www.sciencedirect.com/science/article/pii/S0010218017302559
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.combustflame.2017.07.010
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.