• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Articlefile1.pdf
    Size:
    2.107Mb
    Format:
    PDF
    Description:
    Publisher's Version/PDF
    Download
    Type
    Article
    Authors
    Lee, Changmin
    Shen, Chao cc
    Cozzan, Clayton
    Farrell, Robert M.
    Speck, James S.
    Nakamura, Shuji
    Ooi, Boon S. cc
    DenBaars, Steven P.
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Photonics Laboratory
    KAUST Grant Number
    SB140014
    Date
    2017-07-12
    Online Publication Date
    2017-07-12
    Print Publication Date
    2017-07-24
    Permanent link to this record
    http://hdl.handle.net/10754/625681
    
    Metadata
    Show full item record
    Abstract
    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021) substrate emitting at 410 nm was used for the transmitter. The measured modulation bandwidth of the LD was 1 GHz, which was limited by the avalanche photodetector. The emission from the NUV LD and the RGB phosphor combination measured a color rendering index (CRI) of 79 and correlated color temperature (CCT) of 4050 K, indicating promise of this approach for creating high quality white lighting. Using this configuration, data was successfully transmitted at a rate of more than 1 Gbps. This NUV laser-based system is expected to have lower background noise from sunlight at the LD emission wavelength than a system that uses a blue LD due to the rapid fall off in intensity of the solar spectrum in the NUV spectral region.
    Citation
    Lee C, Shen C, Cozzan C, Farrell RM, Speck JS, et al. (2017) Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors. Optics Express 25: 17480. Available: http://dx.doi.org/10.1364/oe.25.017480.
    Sponsors
    This work was performed at the King Abdullah University of Science and Technology (KAUST) and UCSB and was supported by the KACST(SB140013)-KAUST(SB140014)-UCSB Solid State Lighting Program (SSLP) and the Solid State Lighting and Energy Electronics Center (SSLEEC). A portion of this work was done in the UCSB nanofabrication facility, part of the National Science Foundation (NSF) funded by Nanotechnology Infrastructure Network (NNIN) (ECS-0335765) and the UCSB Materials Research Laboratory (MRL) center facilities supported by the NSF MRSEC Program (DMR05-20415).
    Publisher
    The Optical Society
    Journal
    Optics Express
    DOI
    10.1364/oe.25.017480
    Additional Links
    https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-15-17480
    https://doi.org/10.1364/oe.25.017480
    ae974a485f413a2113503eed53cd6c53
    10.1364/oe.25.017480
    Scopus Count
    Collections
    Articles; Electrical and Computer Engineering Program; Photonics Laboratory; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.