Show simple item record

dc.contributor.authorWang, Hsin-Ping
dc.contributor.authorHe, Jr-Hau
dc.date.accessioned2017-10-03T12:49:33Z
dc.date.available2017-10-03T12:49:33Z
dc.date.issued2017-07-11
dc.identifier.citationWang H-P, He J-H (2017) Toward Highly Efficient Nanostructured Solar Cells Using Concurrent Electrical and Optical Design. Advanced Energy Materials: 1602385. Available: http://dx.doi.org/10.1002/aenm.201602385.
dc.identifier.issn1614-6832
dc.identifier.doi10.1002/aenm.201602385
dc.identifier.doi10.1002/aenm.201770139
dc.identifier.urihttp://hdl.handle.net/10754/625679
dc.description.abstractRecent technological advances in conventional planar and microstructured solar cell architectures have significantly boosted the efficiencies of these devices near the corresponding theoretical values. Nanomaterials and nanostructures have promising potential to push the theoretical limits of solar cell efficiency even higher using the intrinsic advantages associated with these materials, including efficient photon management, rapid charge transfer, and short charge collection distances. However, at present the efficiency of nanostructured solar cells remains lower than that of conventional solar devices due to the accompanying losses associated with the employment of nanomaterials. The concurrent design of both optical and electrical components will presumably be an imperative route toward breaking the present-day limit of nanostructured solar cells. This review summarizes the losses in traditional solar cells, and then discusses recent advances in applications of nanotechnology to solar devices from both optical and electrical perspectives. Finally, a rule for nanostructured solar cells by concurrently engineering the optical and electrical design is devised. Following these guidelines should allow for exceeding the theoretical limit of solar cell efficiency soon.
dc.description.sponsorshipKing Abdullah University of Science and Technology
dc.publisherWiley
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/aenm.201602385/full
dc.subjectconcurrent design
dc.subjectelectrical design
dc.subjectnanostructured solar cells
dc.subjectoptical design
dc.subjectphoton management
dc.titleToward Highly Efficient Nanostructured Solar Cells Using Concurrent Electrical and Optical Design
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentKAUST Solar Center (KSC)
dc.identifier.journalAdvanced Energy Materials
kaust.personWang, Hsin-Ping
kaust.personHe, Jr-Hau
dc.date.published-online2017-07-11
dc.date.published-print2017-12


This item appears in the following Collection(s)

Show simple item record