• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Optimization of the octane response of gasoline/ethanol blends

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Badra+-+Optimization+of+the+ON+GasEOH+Blends+(2017)-+Applied+Energy.pdf
    Size:
    2.311Mb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    Badra, Jihad cc
    AlRamadan, Abdullah
    Sarathy, Mani cc
    KAUST Department
    Chemical Engineering Program
    Clean Combustion Research Center
    Combustion and Pyrolysis Chemistry (CPC) Group
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2017-07-04
    Online Publication Date
    2017-07-04
    Print Publication Date
    2017-10
    Permanent link to this record
    http://hdl.handle.net/10754/625660
    
    Metadata
    Show full item record
    Abstract
    The octane responses of gasoline/ethanol mixtures are not well understood because of the unidentified intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase or decrease, and the non-linearity is determined by the composition of the base gasoline and the amount of added ethanol. The complexity of commercial gasolines, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates is critical to acquire knowledge about ethanol blending with complex multi-component gasoline fuels. In this study, the octane numbers (ON) of ethanol blends with five relevant gasoline surrogate molecules were measured. The molecules investigated in this study include: n-pentane, iso-pentane, 1,2,4-trimethylbenzene, cyclopentane and 1-hexene. These new measurements along with the available data of n-heptane, iso-octane, toluene, various primary reference fuels (PRF) and toluene primary reference fuels (TPRF) with ethanol are used to develop a blending rule for the octane response (RON and MON) of multi-component blends with ethanol. In addition, new ON data are collected for six Fuels for Advanced Combustion Engine (FACE) with ethanol. The relatively simple volume based model successfully predicts the octane numbers (ON) of the various ethanol/PRF and ethanol/TPRF blends with the majority of predictions being within the ASTM D2699 (RON) and D2700 (MON) reproducibility limits. The model is also successfully validated against the ON of the FACE gasolines blended with ethanol with the majority of predictions being within the reproducibility limits. Finally, insights into the possible causes of the synergistic and antagonistic effects of different molecules with ethanol are provided.
    Citation
    Badra J, AlRamadan AS, Sarathy SM (2017) Optimization of the octane response of gasoline/ethanol blends. Applied Energy 203: 778–793. Available: http://dx.doi.org/10.1016/j.apenergy.2017.06.084.
    Sponsors
    This work was sponsored by the Fuel Technology Division at Saudi Aramco R&DC. The work at King Abdullah University of Science and Technology (KAUST) was supported by KAUST under the Clean Combustion Research Center’s Future Fuels program and Saudi Aramco under FUELCOM.
    Publisher
    Elsevier BV
    Journal
    Applied Energy
    DOI
    10.1016/j.apenergy.2017.06.084
    Additional Links
    http://www.sciencedirect.com/science/article/pii/S030626191730836X
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.apenergy.2017.06.084
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.