• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Qamar, Adnan
    Bull, Joseph L.
    KAUST Department
    Water Desalination and Reuse Research Center (WDRC)
    Date
    2017-06-28
    Online Publication Date
    2017-06-28
    Print Publication Date
    2017-08-18
    Permanent link to this record
    http://hdl.handle.net/10754/625647
    
    Metadata
    Show full item record
    Abstract
    Mass transport and fluid dynamics characteristics in the vicinity of an oscillating cylindrical fiber with an imposed pulsatile inflow condition are computationally investigated in the present study. The work is motivated by a recently proposed design modification to the Total Artificial Lung (TAL) device, which is expected to provide better gas exchange. Navier–Stokes computations, coupled with convection–diffusion equation are performed to assess flow dynamics and mass transport behavior around the oscillating fiber. The oscillations and the pulsatile free stream velocity are represented by two sinusoidal functions. The resulting non-dimensional parameters are Keulegan–Carpenter number (KC), Schmidt number (Sc), Reynolds number (Re), pulsatile inflow amplitude (), and amplitude of cylinder oscillation (). Results are computed for , Sc = 1000, Re = 5 and 10, and 0.7 and 0.25 5.25. The pulsatile inflow parameters correspond to the flow velocities found in human pulmonary artery while matching the operating TAL Reynolds number. Mass transport from the surface of the cylinder to the bulk fluid is found to be primarily dependent on the size of surface vortices created by the movement of the cylinder. Time-averaged surface Sherwood number (Sh) is dependent on the amplitude and KC of cylinder oscillation. Compared to the fixed cylinder case, a significant gain up to 380% in Sh is achieved by oscillating the cylinder even at the small displacement amplitude (AD = 0.75D). Moreover, with decrease in KC the oscillating cylinder exhibits a lower drag amplitude compared with the fixed cylinder case. Inflow pulsation amplitude has minor effects on the mass transport characteristics. However, an increase in results in an increase in the amplitude of the periodic drag force on the cylinder. This rise in the drag amplitude is similar to that measured for the fixed cylinder case. Quantifications of shear stress distribution in the bulk fluid suggest that the physiological concerns of platelet activation and injury to red blood cells due to cylinder oscillation are negligible.
    Citation
    Qamar A, Bull JL (2017) Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application. Computer Methods in Biomechanics and Biomedical Engineering 20: 1195–1211. Available: http://dx.doi.org/10.1080/10255842.2017.1340467.
    Sponsors
    The authors financial support from National Institute of Health [grant number RO1HL089043].
    Publisher
    Informa UK Limited
    Journal
    Computer Methods in Biomechanics and Biomedical Engineering
    DOI
    10.1080/10255842.2017.1340467
    Additional Links
    http://www.tandfonline.com/doi/full/10.1080/10255842.2017.1340467
    ae974a485f413a2113503eed53cd6c53
    10.1080/10255842.2017.1340467
    Scopus Count
    Collections
    Articles; Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.