Show simple item record

dc.contributor.authorQamar, Adnan
dc.contributor.authorWarnez, Matthew
dc.contributor.authorValassis, Doug T.
dc.contributor.authorGuetzko, Megan E.
dc.contributor.authorBull, Joseph L.
dc.date.accessioned2017-10-03T12:49:31Z
dc.date.available2017-10-03T12:49:31Z
dc.date.issued2017-06-28
dc.identifier.citationQamar A, Warnez M, Valassis DT, Guetzko ME, Bull JL (2017) Small-bubble transport and splitting dynamics in a symmetric bifurcation. Computer Methods in Biomechanics and Biomedical Engineering 20: 1182–1194. Available: http://dx.doi.org/10.1080/10255842.2017.1340466.
dc.identifier.issn1025-5842
dc.identifier.issn1476-8259
dc.identifier.doi10.1080/10255842.2017.1340466
dc.identifier.urihttp://hdl.handle.net/10754/625646
dc.description.abstractSimulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.
dc.description.sponsorshipThis research has been funded by NIH [grant number RO1EB006467].
dc.publisherInforma UK Limited
dc.relation.urlhttp://www.tandfonline.com/doi/full/10.1080/10255842.2017.1340466
dc.subjectGas embolotherapy
dc.subjectbubble splitting
dc.subjectshear stress in bifurcation
dc.subjectvolume of fluid
dc.titleSmall-bubble transport and splitting dynamics in a symmetric bifurcation
dc.typeArticle
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)
dc.identifier.journalComputer Methods in Biomechanics and Biomedical Engineering
dc.contributor.institutionBiomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
dc.contributor.institutionMechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
dc.contributor.institutionCase Medical Center, Case Western Reserve University, Cleveland, OH, USA.
kaust.personQamar, Adnan
dc.date.published-online2017-06-28
dc.date.published-print2017-08-18


This item appears in the following Collection(s)

Show simple item record