• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Kobayashi, Eiji
    De Wolf, Stefaan cc
    Levrat, Jacques
    Descoeudres, Antoine
    Despeisse, Matthieu
    Haug, Franz-Josef
    Ballif, Christophe
    KAUST Department
    KAUST Solar Center (KSC)
    Material Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2017-06-24
    Online Publication Date
    2017-06-24
    Print Publication Date
    2017-12
    Permanent link to this record
    http://hdl.handle.net/10754/625637
    
    Metadata
    Show full item record
    Abstract
    Silicon heterojunction solar cells use crystalline silicon (c-Si) wafers as optical absorbers and employ bilayers of doped/intrinsic hydrogenated amorphous silicon (a-Si:H) to form passivating contacts. Recently, we demonstrated that such solar cells increase their operating voltages and thus their conversion efficiencies during light exposure. We found that this performance increase is due to improved passivation of the a-Si:H/c-Si interface and is induced by injected charge carriers (either by light soaking or forward-voltage biasing of the device). Here, we discuss this counterintuitive behavior and establish that: (i) the performance increase is observed in solar cells as well as modules; (ii) this phenomenon requires the presence of doped a-Si:H films, but is independent from whether light is incident from the a-Si:H(p) or the a-Si:H(n) side; (iii) UV and blue photons do not play a role in this effect; (iv) the performance increase can be observed under illumination intensities as low as 20Wm (0.02-sun) and appears to be almost identical in strength when under 1-sun (1000Wm); (v) the underlying physical mechanism likely differs from annealing-induced surface passivation.
    Citation
    Kobayashi E, De Wolf S, Levrat J, Descoeudres A, Despeisse M, et al. (2017) Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking. Solar Energy Materials and Solar Cells 173: 43–49. Available: http://dx.doi.org/10.1016/j.solmat.2017.06.023.
    Sponsors
    The authors are grateful to Yoshimi Watabe and Fumiharu Ishimura for the sample preparation of single cell modules. The authors are also grateful to Mathieu Boccard, Gabriel Christmann, Sylvain Nicolay, Philipp Löper, Jan Haschke, Raphaël Monnard, Jean Cattin, Andrea Tomasi, Gizem Nogay, Andrea Ingenito, Philipp Wyss, Josua Stuckelberger, Silvia Martin de Nicolas, Jonathan Champliaud, and Christophe Allebé for fruitful discussions. The simulations were done with the software package ASA of Delft University of Technology. Financial support from the Swiss Federal Office of Energy, EU FP7 program (CHETAAH Project, Contract No. 609788), and King Abdullah University of Science and Technology (KAUST) is acknowledged.
    Publisher
    Elsevier BV
    Journal
    Solar Energy Materials and Solar Cells
    DOI
    10.1016/j.solmat.2017.06.023
    Additional Links
    http://www.sciencedirect.com/science/article/pii/S0927024817303318
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.solmat.2017.06.023
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program; KAUST Solar Center (KSC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.