Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics
Name:
revised manuscript CPT_part1.pdf
Size:
1.467Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleKAUST Department
Chemical Engineering ProgramClean Combustion Research Center
Combustion and Pyrolysis Chemistry (CPC) Group
Physical Science and Engineering (PSE) Division
Date
2017-06-23Online Publication Date
2017-06-23Print Publication Date
2017-09Permanent link to this record
http://hdl.handle.net/10754/625633
Metadata
Show full item recordAbstract
Cycloalkanes are significant constituents of conventional fossil fuels, in which they are one of the main contributors to soot formation, but also significantly influence the ignition characteristics below ∼900K. This paper discusses the development of a detailed high- and low-temperature oxidation mechanism for cyclopentane, which is an important archetypical cycloalkane. The differences between cyclic and non-cyclic alkane chemistry, and thus the inapplicability of acyclic alkane analogies, required the detailed theoretical investigation of the kinetics of important cyclopentane oxidation reactions as part of the mechanism development. The cyclopentyl+O reaction was investigated at the UCCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory in a time-dependent master equation framework. Comparisons with analogous cyclohexane or non-cyclic alkane reactions are presented. Our study suggests that beyond accurate quantum chemistry the inclusion of pressure dependence and especially that of formally direct kinetics is crucial even at pressures relevant for practical application.Citation
Al Rashidi MJ, Mehl M, Pitz WJ, Mohamed S, Sarathy SM (2017) Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics. Combustion and Flame 183: 358–371. Available: http://dx.doi.org/10.1016/j.combustflame.2017.05.018.Sponsors
The authors would like to acknowledge Dr. Judit Zador for her valuable support and feedback. This work was performed by the Clean Combustion Research Center with funding from King Abdullah University of Science and Technology (KAUST) and Saudi Aramco under the FUELCOM program. Research reported in this publication was also supported by competitive research funding from KAUST. The work at LLNL was supported by the U.S. Department of Energy, Vehicle Technologies Office, program managers Gurpreet Singh and Leo Breton and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratories under contract DE-AC52-07NA27344.Publisher
Elsevier BVJournal
Combustion and FlameAdditional Links
http://www.sciencedirect.com/science/article/pii/S0010218017301931ae974a485f413a2113503eed53cd6c53
10.1016/j.combustflame.2017.05.018