Show simple item record

dc.contributor.authorNielsen, Frank
dc.contributor.authorSun, Ke
dc.date.accessioned2017-10-03T12:49:30Z
dc.date.available2017-10-03T12:49:30Z
dc.date.issued2017-06-20
dc.identifier.citationNielsen F, Sun K (2017) Combinatorial bounds on the α-divergence of univariate mixture models. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Available: http://dx.doi.org/10.1109/ICASSP.2017.7953003.
dc.identifier.doi10.1109/ICASSP.2017.7953003
dc.identifier.urihttp://hdl.handle.net/10754/625623
dc.description.abstractWe derive lower- and upper-bounds of α-divergence between univariate mixture models with components in the exponential family. Three pairs of bounds are presented in order with increasing quality and increasing computational cost. They are verified empirically through simulated Gaussian mixture models. The presented methodology generalizes to other divergence families relying on Hellinger-type integrals.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttp://ieeexplore.ieee.org/document/7953003/
dc.subjectComputational complexity
dc.subjectEntropy
dc.subjectEstimation
dc.subjectGaussian mixture model
dc.subjectMixture models
dc.subjectSlabs
dc.titleCombinatorial bounds on the α-divergence of univariate mixture models
dc.typeConference Paper
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journal2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
dc.conference.date2017-03-05 to 2017-03-09
dc.conference.name2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
dc.conference.locationNew Orleans, LA, USA
dc.contributor.institutionSony Computer Science Laboratories Inc.
dc.contributor.institutionÉcole Polytechnique, France
kaust.personSun, Ke
dc.date.published-online2017-06-20
dc.date.published-print2017-03


This item appears in the following Collection(s)

Show simple item record