Show simple item record

dc.contributor.authorEl-Amin, Mohamed F.
dc.contributor.authorKou, Jisheng
dc.contributor.authorSun, Shuyu
dc.date.accessioned2017-10-03T12:49:27Z
dc.date.available2017-10-03T12:49:27Z
dc.date.issued2017-05-05
dc.identifier.citationEl-Amin MF, Kou J, Sun S (2017) Multiscale Adapted Time-Splitting Technique for Nonisothermal Two-Phase Flow and Nanoparticles Transport in Heterogenous Porous Media. SPE Reservoir Characterisation and Simulation Conference and Exhibition. Available: http://dx.doi.org/10.2118/186047-ms.
dc.identifier.doi10.2118/186047-ms
dc.identifier.urihttp://hdl.handle.net/10754/625583
dc.description.abstractThis paper is devoted to study the problem of nonisothermal two-phase flow with nanoparticles transport in heterogenous porous media, numerically. For this purpose, we introduce a multiscale adapted time-splitting technique to simulate the problem under consideration. The mathematical model consists of equations of pressure, saturation, heat, nanoparticles concentration in the water–phase, deposited nanoparticles concentration on the pore–walls, and entrapped nanoparticles concentration in the pore–throats. We propose a multiscale time splitting IMplicit Pressure Explicit Saturation–IMplicit Temperature Concentration (IMPES-IMTC) scheme to solve the system of governing equations. The time step-size adaptation is achieved by satisfying the stability Courant–Friedrichs–Lewy (CFL<1) condition. Moreover, numerical test of a highly heterogeneous porous medium is provided and the water saturation, the temperature, the nanoparticles concentration, the deposited nanoparticles concentration, and the permeability are presented in graphs.
dc.description.sponsorshipThe author is thankful to the Effat University Deanship of Graduate Studies and Researchfor providing the financial support through internal research grants system.
dc.publisherSociety of Petroleum Engineers (SPE)
dc.relation.urlhttps://www.onepetro.org/conference-paper/SPE-186047-MS
dc.titleMultiscale Adapted Time-Splitting Technique for Nonisothermal Two-Phase Flow and Nanoparticles Transport in Heterogenous Porous Media
dc.typeConference Paper
dc.contributor.departmentComputational Transport Phenomena Lab
dc.contributor.departmentEarth Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalSPE Reservoir Characterisation and Simulation Conference and Exhibition
dc.contributor.institutionEffat University
dc.contributor.institutionHubei University
kaust.personSun, Shuyu


This item appears in the following Collection(s)

Show simple item record