Multiscale Adapted Time-Splitting Technique for Nonisothermal Two-Phase Flow and Nanoparticles Transport in Heterogenous Porous Media
Type
Conference PaperKAUST Department
Computational Transport Phenomena LabEarth Science and Engineering Program
Physical Science and Engineering (PSE) Division
Date
2017-05-05Permanent link to this record
http://hdl.handle.net/10754/625583
Metadata
Show full item recordAbstract
This paper is devoted to study the problem of nonisothermal two-phase flow with nanoparticles transport in heterogenous porous media, numerically. For this purpose, we introduce a multiscale adapted time-splitting technique to simulate the problem under consideration. The mathematical model consists of equations of pressure, saturation, heat, nanoparticles concentration in the water–phase, deposited nanoparticles concentration on the pore–walls, and entrapped nanoparticles concentration in the pore–throats. We propose a multiscale time splitting IMplicit Pressure Explicit Saturation–IMplicit Temperature Concentration (IMPES-IMTC) scheme to solve the system of governing equations. The time step-size adaptation is achieved by satisfying the stability Courant–Friedrichs–Lewy (CFL<1) condition. Moreover, numerical test of a highly heterogeneous porous medium is provided and the water saturation, the temperature, the nanoparticles concentration, the deposited nanoparticles concentration, and the permeability are presented in graphs.Citation
El-Amin MF, Kou J, Sun S (2017) Multiscale Adapted Time-Splitting Technique for Nonisothermal Two-Phase Flow and Nanoparticles Transport in Heterogenous Porous Media. SPE Reservoir Characterisation and Simulation Conference and Exhibition. Available: http://dx.doi.org/10.2118/186047-ms.Sponsors
The author is thankful to the Effat University Deanship of Graduate Studies and Researchfor providing the financial support through internal research grants system.Publisher
Society of Petroleum Engineers (SPE)Additional Links
https://www.onepetro.org/conference-paper/SPE-186047-MSae974a485f413a2113503eed53cd6c53
10.2118/186047-ms