Theoretical prediction of the mechanical properties of zeolitic imidazolate frameworks (ZIFs)
Type
ArticleKAUST Department
Advanced Membranes and Porous Materials Research CenterPhysical Science and Engineering (PSE) Division
Date
2017-08-25Permanent link to this record
http://hdl.handle.net/10754/625524
Metadata
Show full item recordAbstract
A good resistance against mechanical stress is essential for the utilization of metal-organic frameworks (MOFs) in practical applications such as gas sorption, separation, catalysis or energy conversion. Here, we report on the successful modification of the mechanical properties of zeolitic imidazolate frameworks (ZIFs) achieved through a substitution of the terminal group. The mechanical modulus of SALEM-2 was found to significantly improve when the -H groups at position 2 of the imidazole linkers were replaced with electron withdrawing groups (-CHO, -Cl, or -Br). The charge distribution and electron density were analyzed to reveal the mechanism behind the observed variation of the elastic stiffness. Furthermore, ZIF-I with a -I group at position 2 of the imidazole linkers was predicted to exhibit an excellent mechanical strength in our study and then prepared experimentally. The results indicate that an inconspicuous change of the structure of ZIFs, i.e., additional groups strengthening the ZnN4 tetrahedron, will lead to a stiffer framework.Citation
Zheng B, Zhu Y, Fu F, Wang LL, Wang J, et al. (2017) Theoretical prediction of the mechanical properties of zeolitic imidazolate frameworks (ZIFs). RSC Adv 7: 41499–41503. Available: http://dx.doi.org/10.1039/c7ra07242b.Sponsors
This work was supported by the Natural Science Foundation of China under grant 21503165 and 51372197, Shaanxi Province 100 plan, and the Key Innovation Team of Shaanxi Province (2014KCT-04).Publisher
Royal Society of Chemistry (RSC)Journal
RSC Advancesae974a485f413a2113503eed53cd6c53
10.1039/c7ra07242b
Scopus Count
Except where otherwise noted, this item's license is described as This article is licensed under a Creative Commons Attribution 3.0 Unported Licence