Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral
Type
ArticleAuthors
Liew, Yi Jin
Zoccola, Didier

Li, Yong

Tambutté, Eric
Venn, Alexander A.
Michell, Craig
Cui, Guoxin

Deutekom, Eva S.
Kaandorp, Jaap A.
Voolstra, Christian R.

Forêt, Sylvain
Allemand, Denis

Tambutté, Sylvie
Aranda, Manuel

KAUST Department
Red Sea Research Center (RSRC)Biological and Environmental Sciences and Engineering (BESE) Division
Bioscience Program
Marine Science Program
KAUST Grant Number
FCC/1/1973-22-01Date
2018-06-06Permanent link to this record
http://hdl.handle.net/10754/625479
Metadata
Show full item recordAbstract
There are increasing concerns that the current rate of climate change might outpace the ability of reef-building corals to adapt to future conditions. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been reported in corals and is thought to associate with phenotypic plasticity, potential mechanisms linked to changes in whole-genome methylation have yet to be elucidated. We show that DNA methylation significantly reduces spurious transcription in the coral Stylophora pistillata. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the hypothesis that linear extension rates are maintained under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization that provides corals with an additional mechanism to cope with environmental change.Citation
Liew YJ, Zoccola D, Li Y, Tambutté E, Venn AA, et al. (2018) Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Science Advances 4: eaar8028. Available: http://dx.doi.org/10.1126/sciadv.aar8028.Sponsors
We thank D. Desgre, N. Caminiti-Segonds, and N. Techer for assistance in coral husbandry; the King Abdullah University of Science and Technology (KAUST) Sequencing Core Facility for the sequencing of the libraries; N. Techer for cell size measurements; P. Alemanno and C. Sattonnet (Polyclinique Saint Jean, Cagnes-sur-Mer, France) for access to the micro-CT; and M. V. Matz and two anonymous reviewers for valuable feedback on our preprint and manuscript. This publication is based on work supported by the KAUST Office of Sponsored Research under award no. FCC/1/1973-22-01. Part of this study was conducted as part of the Centre Scientifique de Monaco Research Program, which is supported by the Government of the Principality of Monaco.Journal
Science AdvancesAdditional Links
http://advances.sciencemag.org/content/4/6/eaar8028Relations
Is Supplemented By:- [Bioproject]
Title: Epigenetic changes in the coral Stylophora pistillata in response to ocean acidificationPublication Date: 2017-05-16. bioproject: PRJNA386774 Handle: 10754/666566
ae974a485f413a2113503eed53cd6c53
10.1126/sciadv.aar8028
Scopus Count
Except where otherwise noted, this item's license is described as This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.