Acceleration of Gas Flow Simulations in Dual-Continuum Porous Media Based on the Mass-Conservation POD Method
Type
ArticleAuthors
Wang, YiSun, Shuyu

Yu, Bo
KAUST Department
Computational Transport Phenomena LabEarth Science and Engineering Program
Physical Science and Engineering (PSE) Division
Date
2017-09-12Permanent link to this record
http://hdl.handle.net/10754/625471
Metadata
Show full item recordAbstract
Reduced-order modeling approaches for gas flow in dual-porosity dual-permeability porous media are studied based on the proper orthogonal decomposition (POD) method combined with Galerkin projection. The typical modeling approach for non-porous-medium liquid flow problems is not appropriate for this compressible gas flow in a dual-continuum porous media. The reason is that non-zero mass transfer for the dual-continuum system can be generated artificially via the typical POD projection, violating the mass-conservation nature and causing the failure of the POD modeling. A new POD modeling approach is proposed considering the mass conservation of the whole matrix fracture system. Computation can be accelerated as much as 720 times with high precision (reconstruction errors as slow as 7.69 × 10−4%~3.87% for the matrix and 8.27 × 10−4%~2.84% for the fracture).Citation
Wang Y, Sun S, Yu B (2017) Acceleration of Gas Flow Simulations in Dual-Continuum Porous Media Based on the Mass-Conservation POD Method. Energies 10: 1380. Available: http://dx.doi.org/10.3390/en10091380.Sponsors
The work presented in this paper has been supported by National Natural Science Foundation of China (NSFC) (No. 51576210, No. 51325603), Science Foundation of China University of Petroleum-Beijing (No. 2462015BJB03, No. 2462015YQ0409, No. C201602) and supported in part by funding from King Abdullah University of Science and Technology (KAUST) through the grant BAS/1/1351-01-01. This work is also supported by the Foundation of Key Laboratory of Thermo-Fluid Science and Engineering (Xi’an Jiaotong University), Ministry of Education, Xi’an 710049, P. R. China (KLTFSE2015KF01).Publisher
MDPI AGJournal
EnergiesAdditional Links
http://www.mdpi.com/1996-1073/10/9/1380ae974a485f413a2113503eed53cd6c53
10.3390/en10091380
Scopus Count
Except where otherwise noted, this item's license is described as This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).