Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities
dc.contributor.author | Genton, Marc G. | |
dc.contributor.author | Keyes, David E. | |
dc.contributor.author | Turkiyyah, George | |
dc.date.accessioned | 2017-09-14T06:03:52Z | |
dc.date.available | 2017-09-14T06:03:52Z | |
dc.date.issued | 2018-05-17 | |
dc.identifier.citation | Genton MG, Keyes DE, Turkiyyah G (2017) Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities. Journal of Computational and Graphical Statistics: 0–0. Available: http://dx.doi.org/10.1080/10618600.2017.1375936. | |
dc.identifier.issn | 1061-8600 | |
dc.identifier.issn | 1537-2715 | |
dc.identifier.doi | 10.1080/10618600.2017.1375936 | |
dc.identifier.uri | http://hdl.handle.net/10754/625457 | |
dc.description.abstract | We present a hierarchical decomposition scheme for computing the n-dimensional integral of multivariate normal probabilities that appear frequently in statistics. The scheme exploits the fact that the formally dense covariance matrix can be approximated by a matrix with a hierarchical low rank structure. It allows the reduction of the computational complexity per Monte Carlo sample from O(n2) to O(mn+knlog(n/m)), where k is the numerical rank of off-diagonal matrix blocks and m is the size of small diagonal blocks in the matrix that are not well-approximated by low rank factorizations and treated as dense submatrices. This hierarchical decomposition leads to substantial efficiencies in multivariate normal probability computations and allows integrations in thousands of dimensions to be practical on modern workstations. | |
dc.publisher | Informa UK Limited | |
dc.relation.url | http://www.tandfonline.com/doi/full/10.1080/10618600.2017.1375936 | |
dc.rights | This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Computational and Graphical Statistics on 07 Sep 2017, available online: http://wwww.tandfonline.com/10.1080/10618600.2017.1375936. | |
dc.subject | Hierarchical low-rank structure | |
dc.subject | Max-stable process | |
dc.subject | Multivariate cumulative distribution function | |
dc.subject | Multivariate skew-normal distribution | |
dc.subject | Spatial statistics | |
dc.title | Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities | |
dc.type | Article | |
dc.contributor.department | Applied Mathematics and Computational Science Program | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.contributor.department | Extreme Computing Research Center | |
dc.contributor.department | Statistics Program | |
dc.identifier.journal | Journal of Computational and Graphical Statistics | |
dc.eprint.version | Post-print | |
dc.contributor.institution | Department of Computer Science, American University of Beirut, Beirut, Lebanon. | |
kaust.person | Genton, Marc G. | |
kaust.person | Keyes, David E. | |
dc.relation.issupplementedby | DOI:10.6084/m9.figshare.5386996 | |
display.relations | <b>Is Supplemented By:</b><br/> <ul><li><i>[Dataset]</i> <br/> Genton, M. G., Keyes, D. E., & Turkiyyah, G. (2017). <i>Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities</i> [Data set]. Taylor & Francis. https://doi.org/10.6084/M9.FIGSHARE.5386996. DOI: <a href="https://doi.org/10.6084/m9.figshare.5386996" >10.6084/m9.figshare.5386996</a> Handle: <a href="http://hdl.handle.net/10754/663816" >10754/663816</a></a></li></ul> | |
dc.date.published-online | 2018-05-17 | |
dc.date.published-print | 2018-04-03 |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Applied Mathematics and Computational Science Program
For more information visit: https://cemse.kaust.edu.sa/amcs -
Extreme Computing Research Center
-
Statistics Program
For more information visit: https://stat.kaust.edu.sa/ -
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/