Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule
Name:
data sheet 1.docx
Size:
23.43Kb
Format:
Microsoft Word 2007
Description:
Supplemental files
Type
ArticleAuthors
Butt, Haroon
Eid, Ayman
Ali, Zahir

Atia, Mohamed A. M.
Mokhtar, Morad M.
Hassan, Norhan
Lee, Ciaran M.
Bao, Gang
Mahfouz, Magdy M.

KAUST Department
Biological and Environmental Science and Engineering (BESE) DivisionBioscience Program
Center for Desert Agriculture
Laboratory for Genome Engineering
Plant Science
Plant Science Program
Date
2017-08-24Permanent link to this record
http://hdl.handle.net/10754/625405
Metadata
Show full item recordAbstract
The CRISPR/Cas9 system has been applied in diverse eukaryotic organisms for targeted mutagenesis. However, targeted gene editing is inefficient and requires the simultaneous delivery of a DNA template for homology-directed repair (HDR). Here, we used CRISPR/Cas9 to generate targeted double-strand breaks and to deliver an RNA repair template for HDR in rice (Oryza sativa). We used chimeric single-guide RNA (cgRNA) molecules carrying both sequences for target site specificity (to generate the double-strand breaks) and repair template sequences (to direct HDR), flanked by regions of homology to the target. Gene editing was more efficient in rice protoplasts using repair templates complementary to the non-target DNA strand, rather than the target strand. We applied this cgRNA repair method to generate herbicide resistance in rice, which showed that this cgRNA repair method can be used for targeted gene editing in plants. Our findings will facilitate applications in functional genomics and targeted improvement of crop traits.Citation
Butt H, Eid A, Ali Z, Atia MAM, Mokhtar MM, et al. (2017) Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule. Frontiers in Plant Science 8. Available: http://dx.doi.org/10.3389/fpls.2017.01441.Sponsors
This study was supported by King Abdullah University of Science and Technology.Publisher
Frontiers Media SAJournal
Frontiers in Plant SciencePubMed ID
28883826Additional Links
http://journal.frontiersin.org/article/10.3389/fpls.2017.01441/fullae974a485f413a2113503eed53cd6c53
10.3389/fpls.2017.01441
Scopus Count
Except where otherwise noted, this item's license is described as This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Related articles
- Predictable NHEJ Insertion and Assessment of HDR Editing Strategies in Plants.
- Authors: Molla KA, Shih J, Wheatley MS, Yang Y
- Issue date: 2022
- Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems.
- Authors: Shams F, Bayat H, Mohammadian O, Mahboudi S, Vahidnezhad H, Soosanabadi M, Rahimpour A
- Issue date: 2022
- Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice.
- Authors: Ali Z, Shami A, Sedeek K, Kamel R, Alhabsi A, Tehseen M, Hassan N, Butt H, Kababji A, Hamdan SM, Mahfouz MM
- Issue date: 2020 Jan 23
- Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania.
- Authors: Zhang WW, Matlashewski G
- Issue date: 2019 Aug 21
- Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice.
- Authors: Li S, Li J, Zhang J, Du W, Fu J, Sutar S, Zhao Y, Xia L
- Issue date: 2018 Sep 14