Elastic reflection based waveform inversion with a nonlinear approach
Type
ArticleAuthors
Guo, QiangAlkhalifah, Tariq Ali

KAUST Department
Earth Science and Engineering ProgramPhysical Science and Engineering (PSE) Division
Seismic Wave Analysis Group
Date
2017-10-16Online Publication Date
2017-10-16Print Publication Date
2017-11Permanent link to this record
http://hdl.handle.net/10754/625363
Metadata
Show full item recordAbstract
Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.Citation
Guo Q, Alkhalifah T (2017) Elastic reflection based waveform inversion with a nonlinear approach. GEOPHYSICS: 1–81. Available: http://dx.doi.org/10.1190/geo2016-0407.1.Sponsors
The authors would like to thank Statoil ASA and the Volve license partners ExxonMobil E&P Norway AS and Bayerngas Norge AS, for the release of the Volve data. The views expressed in this paper are the views of the authors and do not necessarily reflect the views of Statoil ASA and the Volve field license partners. The authors would like to thank Marianne Houbiers from Statoil, who gave some very helpful suggestions and corrections. We also appreciate the suggestions provided by Antoine Guitton, Vincent Prieux from CGG, Jiubing Cheng and also two anonymous reviewers as part of the review process of this paper. We also thank KAUST for its support and we thank the SWAG group for collaborative environment, especially Zedong Wu and Juwon Oh for their helpful suggestions and discussions.Publisher
Society of Exploration GeophysicistsJournal
GEOPHYSICSAdditional Links
http://library.seg.org/doi/10.1190/geo2016-0407.1ae974a485f413a2113503eed53cd6c53
10.1190/geo2016-0407.1