Electric field modulated conduction mechanism in Al/BaTiO3/La0.67Sr0.33MnO3 heterostructures
Type
ArticleKAUST Department
Material Science and Engineering ProgramPhysical Science and Engineering (PSE) Division
Date
2017-08-08Online Publication Date
2017-08-08Print Publication Date
2017-08-07Permanent link to this record
http://hdl.handle.net/10754/625333
Metadata
Show full item recordAbstract
Mediating a metastable state is a promising way to achieve a giant modulation of physical properties in artificial heterostructures. A metastable state La0.67Sr0.33MnO3 (LSMO) layer suffering tensile strain was grown on MgO substrates. Incorporating with the ferroelectric BaTiO3 (BTO) layer, an accumulation or depletion state controlled by electric fields can be formed at the BTO/LSMO interface, which drives a switching of the conduction mechanism between space charge limited conduction and Poole-Frenkel emission, corresponding to the low and high resistance states. Our results lighten an effective way for electric-field modulated resistance states in multiferroic magnetoelectric devices.Citation
Zheng D, Li D, Gong J, Jin C, Li P, et al. (2017) Electric field modulated conduction mechanism in Al/BaTiO3/La0.67Sr0.33MnO3 heterostructures. Applied Physics Letters 111: 062901. Available: http://dx.doi.org/10.1063/1.4997412.Sponsors
This work was supported by the National Natural Science Foundation of China (51272174 and 11434006). The authors thank S. Wu and L. Y. Xu for PFM and KPFM performance. This work was supported by Beijing Synchrotron Radiation Facility (BSRF).Publisher
AIP PublishingJournal
Applied Physics LettersAdditional Links
http://aip.scitation.org/doi/10.1063/1.4997412ae974a485f413a2113503eed53cd6c53
10.1063/1.4997412