Show simple item record

dc.contributor.authorRadecker, Nils
dc.contributor.authorPogoreutz, Claudia
dc.contributor.authorZiegler, Maren
dc.contributor.authorAshok, Ananya
dc.contributor.authorMuniz Barreto, Marcelle
dc.contributor.authorChaidez, Veronica
dc.contributor.authorGrupstra, Carsten G. B.
dc.contributor.authorNg, Yi Mei
dc.contributor.authorPerna, Gabriela
dc.contributor.authorAranda, Manuel
dc.contributor.authorVoolstra, Christian R.
dc.date.accessioned2017-08-10T11:43:32Z
dc.date.available2017-08-10T11:43:32Z
dc.date.issued2017-07-31
dc.identifier.citationRädecker N, Pogoreutz C, Ziegler M, Ashok A, Barreto MM, et al. (2017) Assessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral Pocillopora verrucosa . Ecology and Evolution. Available: http://dx.doi.org/10.1002/ece3.3293.
dc.identifier.issn2045-7758
dc.identifier.doi10.1002/ece3.3293
dc.identifier.urihttp://hdl.handle.net/10754/625310
dc.description.abstractThe productivity of coral reefs in oligotrophic tropical waters is sustained by an efficient uptake and recycling of nutrients. In reef-building corals, the engineers of these ecosystems, this nutrient recycling is facilitated by a constant exchange of nutrients between the animal host and endosymbiotic photosynthetic dinoflagellates (zooxanthellae), bacteria, and other microbes. Due to the complex interactions in this so-called coral holobiont, it has proven difficult to understand the environmental limitations of productivity in corals. Among others, the micronutrient iron has been proposed to limit primary productivity due to its essential role in photosynthesis and bacterial processes. Here, we tested the effect of iron enrichment on the physiology of the coral Pocillopora verrucosa from the central Red Sea during a 12-day experiment. Contrary to previous reports, we did not see an increase in zooxanthellae population density or gross photosynthesis. Conversely, respiration rates were significantly increased, and microbial nitrogen fixation was significantly decreased. Taken together, our data suggest that iron is not a limiting factor of primary productivity in Red Sea corals. Rather, increased metabolic demands in response to iron enrichment, as evidenced by increased respiration rates, may reduce carbon (i.e., energy) availability in the coral holobiont, resulting in reduced microbial nitrogen fixation. This decrease in nitrogen supply in turn may exacerbate the limitation of other nutrients, creating a negative feedback loop. Thereby, our results highlight that the effects of iron enrichment appear to be strongly dependent on local environmental conditions and ultimately may depend on the availability of other nutrients.
dc.description.sponsorshipWe thank Paul Müller and Zenon Batang for allocation of laboratory space at CMOR and for their assistance with the aquaria set up and maintenance. Further, we thank Alaguraj Dharmarajnadar for his help with flow cytometry and data analysis. CRV acknowledges funding by the King Abdullah University of Science and Technology (KAUST). This experiment was conducted as part of the Marine Science MarS330 course “Ecological Genomics.” We would also like to thank the editor and three anonymous reviewers for their valuable feedback on our manuscript.
dc.publisherWiley
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/ece3.3293/full
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectSymbiodinium
dc.subjectCoral reefs
dc.subjectDiazotroph
dc.subjectHolobiont
dc.subjectNutrient limitation
dc.subjectSymbiosis
dc.titleAssessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral Pocillopora verrucosa
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentChemicals & Life Sciences
dc.contributor.departmentComputational Bioscience Research Center (CBRC)
dc.contributor.departmentGeneral Goods
dc.contributor.departmentLab Consumables & Gases
dc.contributor.departmentMarine Science Program
dc.contributor.departmentPurchasing
dc.contributor.departmentRed Sea Research Center (RSRC)
dc.identifier.journalEcology and Evolution
dc.eprint.versionPublisher's Version/PDF
kaust.personRadecker, Nils
kaust.personPogoreutz, Claudia
kaust.personZiegler, Maren
kaust.personAshok, Ananya
kaust.personMuniz Barreto, Marcelle
kaust.personChaidez, Veronica
kaust.personGrupstra, Carsten G. B.
kaust.personNg, Yi Mei
kaust.personPerna, Gabriela
kaust.personAranda, Manuel
kaust.personVoolstra, Christian R.
dc.relation.issupplementedbyDOI:10.5061/dryad.n50jf
refterms.dateFOA2018-06-13T15:32:16Z
display.relations<b>Is Supplemented By:</b><br/> <ul><li><i>[Dataset]</i> <br/> Rädecker, N., Pogoreutz, C., Ziegler, M., Ashok, A., Barreto, M. M., Chaidez, V., Grupstra, C. G. B., Ng, Y. M., Perna, G., Aranda, M., &amp; Voolstra, C. R. (2018). <i>Data from: Assessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral Pocillopora verrucosa</i> (Version 1) [Data set]. Dryad. https://doi.org/10.5061/DRYAD.N50JF. DOI: <a href="https://doi.org/10.5061/dryad.n50jf" >10.5061/dryad.n50jf</a> Handle: <a href="http://hdl.handle.net/10754/662372" >10754/662372</a></a></li></ul>
dc.date.published-online2017-07-31
dc.date.published-print2017-08


Files in this item

Thumbnail
Name:
R-decker_et_al-2017-Ecology_and_Evolution.pdf
Size:
712.3Kb
Format:
PDF
Description:
Main article
Thumbnail
Name:
ece33293-sup-0001-TableS1.docx
Size:
55.10Kb
Format:
Microsoft Word 2007
Description:
Supplemental files

This item appears in the following Collection(s)

Show simple item record

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's license is described as This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.