Engineering Strategies to Decode and Enhance the Genomes of Coral Symbionts
Name:
supplementary dataset 1.xlsx
Size:
255.9Kb
Format:
Microsoft Excel 2007
Description:
Supplemental files
Name:
supplementary information.pdf
Size:
478.3Kb
Format:
PDF
Description:
Supplemental files
Type
ArticleAuthors
Levin, Rachel A.Voolstra, Christian R.

Agrawal, Shobhit
Steinberg, Peter D.
Suggett, David J.

van Oppen, Madeleine J. H.
KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionMarine Science Program
Red Sea Research Center (RSRC)
Date
2017-06-30Permanent link to this record
http://hdl.handle.net/10754/625146
Metadata
Show full item recordAbstract
Elevated sea surface temperatures from a severe and prolonged El Niño event (2014–2016) fueled by climate change have resulted in mass coral bleaching (loss of dinoflagellate photosymbionts, Symbiodinium spp., from coral tissues) and subsequent coral mortality, devastating reefs worldwide. Genetic variation within and between Symbiodinium species strongly influences the bleaching tolerance of corals, thus recent papers have called for genetic engineering of Symbiodinium to elucidate the genetic basis of bleaching-relevant Symbiodinium traits. However, while Symbiodinium has been intensively studied for over 50 years, genetic transformation of Symbiodinium has seen little success likely due to the large evolutionary divergence between Symbiodinium and other model eukaryotes rendering standard transformation systems incompatible. Here, we integrate the growing wealth of Symbiodinium next-generation sequencing data to design tailored genetic engineering strategies. Specifically, we develop a testable expression construct model that incorporates endogenous Symbiodinium promoters, terminators, and genes of interest, as well as an internal ribosomal entry site from a Symbiodinium virus. Furthermore, we assess the potential for CRISPR/Cas9 genome editing through new analyses of the three currently available Symbiodinium genomes. Finally, we discuss how genetic engineering could be applied to enhance the stress tolerance of Symbiodinium, and in turn, coral reefs.Citation
Levin RA, Voolstra CR, Agrawal S, Steinberg PD, Suggett DJ, et al. (2017) Engineering Strategies to Decode and Enhance the Genomes of Coral Symbionts. Frontiers in Microbiology 8. Available: http://dx.doi.org/10.3389/fmicb.2017.01220.Sponsors
Funding from the University of New South Wales and King Abdullah University of Science and Technology (KAUST) supported the analyses presented here.Publisher
Frontiers Media SAJournal
Frontiers in MicrobiologyPubMed ID
28713348Additional Links
http://journal.frontiersin.org/article/10.3389/fmicb.2017.01220/fullae974a485f413a2113503eed53cd6c53
10.3389/fmicb.2017.01220
Scopus Count
Except where otherwise noted, this item's license is described as This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Related articles
- Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals.
- Authors: Fujise L, Yamashita H, Suzuki G, Sasaki K, Liao LM, Koike K
- Issue date: 2014
- Rapid thermal adaptation in photosymbionts of reef-building corals.
- Authors: Chakravarti LJ, Beltran VH, van Oppen MJH
- Issue date: 2017 Nov
- Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals.
- Authors: Silverstein RN, Cunning R, Baker AC
- Issue date: 2015 Jan
- Comparison of 15 dinoflagellate genomes reveals extensive sequence and structural divergence in family Symbiodiniaceae and genus Symbiodinium.
- Authors: González-Pech RA, Stephens TG, Chen Y, Mohamed AR, Cheng Y, Shah S, Dougan KE, Fortuin MDA, Lagorce R, Burt DW, Bhattacharya D, Ragan MA, Chan CX
- Issue date: 2021 Apr 13
- Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances.
- Authors: Levin RA, Beltran VH, Hill R, Kjelleberg S, McDougald D, Steinberg PD, van Oppen MJ
- Issue date: 2016 Sep