• Login
    View Item 
    •   Home
    • Research
    • Conference Papers
    • View Item
    •   Home
    • Research
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Combustion Stratification for Naphtha from CI Combustion to PPC

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    2017-01-0745.pdf
    Size:
    5.309Mb
    Format:
    PDF
    Description:
    Main article
    Download
    Type
    Conference Paper
    Authors
    Vallinayagam, R.
    Vedharaj, S.
    An, Yanzhao cc
    Dawood, Alaaeldin
    Izadi Najafabadi, Mohammad
    Somers, Bart
    Johansson, Bengt cc
    KAUST Department
    Clean Combustion Research Center
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2017-03-28
    Permanent link to this record
    http://hdl.handle.net/10754/625129
    
    Metadata
    Show full item record
    Abstract
    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14.7%, stratification level is decreased. NO emission for both diesel and naphtha show a decreasing trend from CI to PPC. Comparing diesel and naphtha, the soot emission is lower for naphtha. NO and soot emissions at various SOI are correlated with high speed images of combustion to explain the combustion stratification.
    Citation
    Vallinayagam R, Vedharaj S, An Y, Dawood A, Izadi Najafabadi M, et al. (2017) Combustion Stratification for Naphtha from CI Combustion to PPC. SAE Technical Paper Series. Available: http://dx.doi.org/10.4271/2017-01-0745.
    Sponsors
    This work was funded by competitive research funding from King Abdullah University of Science and Technology (KAUST) under the Clean Combustion Research Center’s research program. We also acknowledge funding from KAUST and Saudi Aramco under the FUELCOM program. Finally, we would like to express our gratitude to our research Technician, Adrian. I. Ichim for his support in carrying out the experiments at KAUST engine lab.
    Publisher
    SAE International
    Journal
    SAE Technical Paper Series
    Conference/Event name
    SAE World Congress Experience, WCX 2017
    DOI
    10.4271/2017-01-0745
    Additional Links
    https://saemobilus.sae.org/content/2017-01-0745
    ae974a485f413a2113503eed53cd6c53
    10.4271/2017-01-0745
    Scopus Count
    Collections
    Conference Papers; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.