• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Effect of heat, UV radiation, and moisture on the decohesion kinetics of inverted organic solar cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Rolston, Nicholas
    Printz, Adam D.
    Dupont, Stephanie R.
    Voroshazi, Eszter
    Dauskardt, Reinhold H.
    KAUST Grant Number
    KUS-C1-015-21
    Date
    2017-06-15
    Online Publication Date
    2017-06-15
    Print Publication Date
    2017-10
    Permanent link to this record
    http://hdl.handle.net/10754/625117
    
    Metadata
    Show full item record
    Abstract
    Organic solar cells subjected to environmental stressors such as heat, moisture, and UV radiation can undergo significant mechanical degradation, leading to delamination of layers and device failure. This paper reports the effect these stressors have on the mechanical integrity of active layers and interfaces as measured by subcritical debonding tests, and the in situ evolution of defects and fracture processes is characterized. At elevated temperatures below 50 °C in inert conditions, significant device weakening was observed, an effect we attributed to a temperature-induced P3HT:PCBM delamination mechanism from the underlying ZnO. At 50 °C in ambient conditions with UV exposure—selected to better simulate real-world environments—devices were more resistant to fracture because of an interfacial strengthening effect from increased hydrogen bonding where UV-induced Zn(OH)2 formation reinforced the interface with P3HT:PCBM. This photoinduced hydroxylation mechanism was determined from a decrease in the Zn/O ratio with increased UVA or UVB exposure, and hydroxylation was shown to directly correlate with the resistance to fracture in devices.
    Citation
    Rolston N, Printz AD, Dupont SR, Voroshazi E, Dauskardt RH (2017) Effect of heat, UV radiation, and moisture on the decohesion kinetics of inverted organic solar cells. Solar Energy Materials and Solar Cells 170: 239–245. Available: http://dx.doi.org/10.1016/j.solmat.2017.06.002.
    Sponsors
    This research was supported by the Center for Advanced Molecular Photovoltaics (CAMP) supported by King Abdullah University of Science and Technology (KAUST) under award no. KUS-C1-015-21. Additional support was provided by the National Science Foundation Graduate Research Fellowship, awarded to N. Rolston under award no. DGE-1656518. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-1542152.
    Publisher
    Elsevier BV
    Journal
    Solar Energy Materials and Solar Cells
    DOI
    10.1016/j.solmat.2017.06.002
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.solmat.2017.06.002
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.