• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A reduced fidelity model for the rotary chemical looping combustion reactor

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Iloeje, Chukwunwike O.
    Zhao, Zhenlong cc
    Ghoniem, Ahmed F.
    Date
    2017-01-11
    Online Publication Date
    2017-01-11
    Print Publication Date
    2017-03
    Permanent link to this record
    http://hdl.handle.net/10754/625116
    
    Metadata
    Show full item record
    Abstract
    The rotary chemical looping combustion reactor has great potential for efficient integration with CO capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate the feasibility of continuous reactor operation. Though this detailed model provides a high resolution representation of the rotary reactor performance, it is too computationally expensive for studies that require multiple model evaluations. Specifically, it is not ideal for system-level studies where the reactor is a single component in an energy conversion system. In this study, we present a reduced fidelity model (RFM) of the rotary reactor that reduces computational cost and determines an optimal combination of variables that satisfy reactor design requirements. Simulation results for copper, nickel and iron-based oxygen carriers show a four-order of magnitude reduction in simulation time, and reasonable prediction accuracy. Deviations from the detailed reference model predictions range from 3% to 20%, depending on oxygen carrier type and operating conditions. This study also demonstrates how the reduced model can be modified to deal with both optimization and design oriented problems. A parametric study using the reduced model is then applied to analyze the sensitivity of the optimal reactor design to changes in selected operating and kinetic parameters. These studies show that temperature and activation energy have a greater impact on optimal geometry than parameters like pressure or feed fuel fraction for the selected oxygen carrier materials.
    Citation
    Iloeje CO, Zhao Z, Ghoniem AF (2017) A reduced fidelity model for the rotary chemical looping combustion reactor. Applied Energy 190: 725–739. Available: http://dx.doi.org/10.1016/j.apenergy.2016.12.072.
    Sponsors
    This study was financially supported by a grant from the MASDAR Institute of Science and Technology and the King Abdullah University of Science and Technology (KAUST) Investigator Award.
    Publisher
    Elsevier BV
    Journal
    Applied Energy
    DOI
    10.1016/j.apenergy.2016.12.072
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.apenergy.2016.12.072
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.