Show simple item record

dc.contributor.authorHaschke, Jan
dc.contributor.authorSeif, Johannes P.
dc.contributor.authorRiesen, Yannick
dc.contributor.authorTomasi, Andrea
dc.contributor.authorCattin, Jean
dc.contributor.authorTous, Loïc
dc.contributor.authorChoulat, Patrick
dc.contributor.authorAleman, Monica
dc.contributor.authorCornagliotti, Emanuele
dc.contributor.authorUruena, Angel
dc.contributor.authorRussell, Richard
dc.contributor.authorDuerinckx, Filip
dc.contributor.authorChampliaud, Jonathan
dc.contributor.authorLevrat, Jacques
dc.contributor.authorAbdallah, Amir A.
dc.contributor.authorAïssa, Brahim
dc.contributor.authorTabet, Nouar
dc.contributor.authorWyrsch, Nicolas
dc.contributor.authorDespeisse, Matthieu
dc.contributor.authorSzlufcik, Jozef
dc.contributor.authorDe Wolf, Stefaan
dc.contributor.authorBallif, Christophe
dc.date.accessioned2017-06-14T12:17:35Z
dc.date.available2017-06-14T12:17:35Z
dc.date.issued2017
dc.identifier.citationHaschke J, Seif JP, Riesen Y, Tomasi A, Cattin J, et al. (2017) The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates. Energy & Environmental Science 10: 1196–1206. Available: http://dx.doi.org/10.1039/c7ee00286f.
dc.identifier.issn1754-5692
dc.identifier.issn1754-5706
dc.identifier.doi10.1039/c7ee00286f
dc.identifier.urihttp://hdl.handle.net/10754/625028
dc.description.abstractExtensive knowledge of the dependence of solar cell and module performance on temperature and irradiance is essential for their optimal application in the field. Here we study such dependencies in the most common high-efficiency silicon solar cell architectures, including so-called Aluminum back-surface-field (BSF), passivated emitter and rear cell (PERC), passivated emitter rear totally diffused (PERT), and silicon heterojunction (SHJ) solar cells. We compare measured temperature coefficients (TC) of the different electrical parameters with values collected from commercial module data sheets. While similar TC values of the open-circuit voltage and the short circuit current density are obtained for cells and modules of a given technology, we systematically find that the TC under maximum power-point (MPP) conditions is lower in the modules. We attribute this discrepancy to additional series resistance in the modules from solar cell interconnections. This detrimental effect can be reduced by using a cell design that exhibits a high characteristic load resistance (defined by its voltage-over-current ratio at MPP), such as the SHJ architecture. We calculate the energy yield for moderate and hot climate conditions for each cell architecture, taking into account ohmic cell-to-module losses caused by cell interconnections. Our calculations allow us to conclude that maximizing energy production in hot and sunny environments requires not only a high open-circuit voltage, but also a minimal series-to-load-resistance ratio.
dc.description.sponsorshipThe authors would like to thank Eleonora Annigoni and Alessandro Virtuani for fruitful discussions, and Virginia Unkefer from King Abdullah University of Science and Technology (KAUST) for manuscript editing. This work was supported by Qatar Foundation, and the European Commission (FP7 Project CHEETAH, Contract No. 609788).
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.urlhttp://pubs.rsc.org/en/Content/ArticleLanding/2017/EE/C7EE00286F#!divAbstract
dc.rightsArchived with thanks to Energy Environ. Sci.
dc.titleThe impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates
dc.typeArticle
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalEnergy Environ. Sci.
dc.eprint.versionPost-print
dc.contributor.institutionEcole Polytechnique Fédérale de Lausanne, Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory (PV-lab), Rue de la Maladière 71B, CH-2002 Neuchâtel, Switzerland
dc.contributor.institutionInteruniversity Microelectronics Center (imec), Kapeldreef 75, BE-3001 Leuven, Belgium
dc.contributor.institutionSwiss Center for Electronics and Microtechnology (CSEM), PV-center, Rue Jaquet Droz 1, CH-2002 Neuchâtel, Switzerland
dc.contributor.institutionQatar Environment and Energy Research Institute (QEERI), Hamad bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
kaust.personDe Wolf, Stefaan
refterms.dateFOA2018-03-22T00:00:00Z


Files in this item

Thumbnail
Name:
rev1_no-highlighting.pdf
Size:
1.973Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record