Light Manipulation in Metallic Nanowire Networks with Functional Connectivity
Type
ArticleKAUST Department
Applied Mathematics and Computational Science ProgramComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Electrical Engineering Program
PRIMALIGHT Research Group
KAUST Grant Number
CRG-1-2012-FRA-005)Date
2016-12-27Online Publication Date
2016-12-27Print Publication Date
2017-03Permanent link to this record
http://hdl.handle.net/10754/625011
Metadata
Show full item recordAbstract
Guided by ideas from complex systems, a new class of network metamaterials is introduced for light manipulation, which are based on the functional connectivity among heterogeneous subwavelength components arranged in complex networks. The model system is a nanonetwork formed by dealloying a metallic thin film. The connectivity of the network is deterministically controlled, enabling the formation of tunable absorbing states.Citation
Galinski, H., Fratalocchi, A., Döbeli, M., & Capasso, F. (2016). Light Manipulation in Metallic Nanowire Networks with Functional Connectivity. Advanced Optical Materials, 5(5), 1600580. doi:10.1002/adom.201600580Sponsors
H.G. and A.F. contributed equally to this work. H.G. designed and performed the experimental research and fabricated and analyzed the samples used in the article. A.F. designed the theoretical research, developed the network approach based on functional connectivity, and performed FDTD simulations. M.D. performed the Rutherford backscattering experiments. F.C. suggested experiments and contributed to the interpretation. All authors contributed equally to the preparation of the manuscript. H. Galinski gratefully acknowledges financial support from the Size Matters! project, (TDA Capital, UK). Sincere thanks are given to the EMEZ (Electron Microscopy Center, ETH Zurich) and the FIRST clean-room team for their support. A. Fratalocchi and F. Capasso acknowledge funding from KAUST (Award No. CRG-1-2012-FRA-005). F. Capasso and H. Galinski acknowledge the support of Air Force Office of Scientific Research (MURI: FA9550-14-1-0389). The authors declare that they have no competing financial interests. H. Galinski thanks M. Fiebig and M. Lilienblum from the Laboratory for Multifunctional Ferroic Materials (ETH Zurich) for access to the micro-spectrophotometer. A. Fratalocchi thanks P. Magistretti for fruitful discussions about brain functions and neural networks. This work was performed in part at the Center of Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF award no. 1541959. CNS is part of Harvard University.Publisher
WileyJournal
Advanced Optical MaterialsAdditional Links
http://onlinelibrary.wiley.com/doi/10.1002/adom.201600580/abstracthttps://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/adom.201600580
ae974a485f413a2113503eed53cd6c53
10.1002/adom.201600580